GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 47 ( 2016-11-22), p. 13504-13509
    Abstract: Schizophrenia, a devastating psychiatric illness with onset in the late teens to early 20s, is thought to involve disrupted brain connectivity. Functional and structural disconnections of cortical networks may underlie various cognitive deficits, including a substantial reduction in the speed of information processing in schizophrenia patients compared with controls. Myelinated white matter supports the speed of electrical signal transmission in the brain. To examine possible neuroanatomical sources of cognitive deficits, we used a comprehensive diffusion-weighted imaging (DWI) protocol and characterized the white matter diffusion signals using diffusion kurtosis imaging (DKI) and permeability–diffusivity imaging (PDI) in patients ( n = 74), their nonill siblings ( n = 41), and healthy controls ( n = 113). Diffusion parameters that showed significant patient–control differences also explained the patient–control differences in processing speed. This association was also found for the nonill siblings of the patients. The association was specific to processing-speed abnormality but not specific to working memory abnormality or psychiatric symptoms. Our findings show that advanced diffusion MRI in white matter may capture microstructural connectivity patterns and mechanisms that govern the association between a core neurocognitive measure—processing speed—and neurobiological deficits in schizophrenia that are detectable with in vivo brain scans. These non-Gaussian diffusion white matter metrics are promising surrogate imaging markers for modeling cognitive deficits and perhaps, guiding treatment development in schizophrenia.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 50 ( 2019-12-10), p. 25243-25249
    Abstract: Cardiovascular risk factors such as dyslipidemia and hypertension increase the risk for white matter pathology and cognitive decline. We hypothesize that white matter levels of N -acetylaspartate (NAA), a chemical involved in the metabolic pathway for myelin lipid synthesis, could serve as a biomarker that tracks the influence of cardiovascular risk factors on white matter prior to emergence of clinical changes. To test this, we measured levels of NAA across white matter and gray matter in the brain using echo planar spectroscopic imaging (EPSI) in 163 individuals and examined the relationship of regional NAA levels and cardiovascular risk factors as indexed by the Framingham Cardiovascular Risk Score (FCVRS). NAA was strongly and negatively correlated with FCVRS across the brain, but, after accounting for age and sex, the association was found primarily in white matter regions, with additional effects found in the thalamus, hippocampus, and cingulate gyrus. FCVRS was also negatively correlated with creatine levels, again primarily in white matter. The results suggest that cardiovascular risks are related to neurochemistry with a predominantly white matter pattern and some subcortical and cortical gray matter involvement. NAA mapping of the brain may provide early surveillance for the potential subclinical impact of cardiovascular and metabolic risk factors on the brain.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...