GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 47 ( 2007-11-20), p. 18866-18870
    Abstract: The growth rate of atmospheric carbon dioxide (CO 2 ), the largest human contributor to human-induced climate change, is increasing rapidly. Three processes contribute to this rapid increase. Two of these processes concern emissions. Recent growth of the world economy combined with an increase in its carbon intensity have led to rapid growth in fossil fuel CO 2 emissions since 2000: comparing the 1990s with 2000–2006, the emissions growth rate increased from 1.3% to 3.3% y −1 . The third process is indicated by increasing evidence ( P = 0.89) for a long-term (50-year) increase in the airborne fraction (AF) of CO 2 emissions, implying a decline in the efficiency of CO 2 sinks on land and oceans in absorbing anthropogenic emissions. Since 2000, the contributions of these three factors to the increase in the atmospheric CO 2 growth rate have been ≈65 ± 16% from increasing global economic activity, 17 ± 6% from the increasing carbon intensity of the global economy, and 18 ± 15% from the increase in AF. An increasing AF is consistent with results of climate–carbon cycle models, but the magnitude of the observed signal appears larger than that estimated by models. All of these changes characterize a carbon cycle that is generating stronger-than-expected and sooner-than-expected climate forcing.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Functional Plant Biology, CSIRO Publishing, Vol. 31, No. 11 ( 2004), p. 1043-
    Abstract: Net primary production links the biosphere and the climate system through the global cycling of carbon, water and nutrients. Accurate quantification of net primary productivity (NPP) is therefore critical in understanding the response of the world’s ecosystems to global climate change, and how changes in ecosystems might themselves feed back to the climate system. Twelve model estimates of long-term annual NPP for the Australian continent were reviewed. These models varied considerably in the approaches adopted and the inputs required. The model estimates ranged 5-fold, from 0.67 to 3.31 Gt C y–1. Within-continent variation was similarly large, with most of the discrepancies occurring in the arid zone of Australia, which comprises most of the continent. It is also within this zone that empirical NPP data are most lacking. Comparison with a recent global-scale analysis of six dynamic global vegetation models showed a similar level of variability in continental total NPP, 0.38 to 2.85 Gt C y–1, and similar within-continent spatial variability. As a first tentative step towards model validation the twelve NPP estimates were compared with existing field measurements, although the ability to reach definitive conclusions was limited by insufficient data, and incompatibilities between the field-based observations and the model predictions. It was concluded that the current NPP-modelling capability falls short of the accuracy required for effective application in understanding the terrestrial biospheric implications of global atmospheric / climatic change. Potential methods that could be used in future work for improving modelled estimates of Australian continental NPP and their validation are discussed. These include increasing the spatial coverage of empirical NPP estimates within arid ecosystems, the use of existing high quality site data for more detailed model exploration, and a formal model inter-comparison using uniform driver datasets to investigate more intensively differences in model behaviour and assumptions.
    Type of Medium: Online Resource
    ISSN: 1445-4408
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2004
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2008
    In:  Science Vol. 320, No. 5882 ( 2008-06-13), p. 1456-1457
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 320, No. 5882 ( 2008-06-13), p. 1456-1457
    Abstract: Forests currently absorb billions of tons of CO 2 globally every year, an economic subsidy worth hundreds of billions of dollars if an equivalent sink had to be created in other ways. Concerns about the permanency of forest carbon stocks, difficulties in quantifying stock changes, and the threat of environmental and socioeconomic impacts of large-scale reforestation programs have limited the uptake of forestry activities in climate policies. With political will and the involvement of tropical regions, forests can contribute to climate change protection through carbon sequestration as well as offering economic, environmental, and sociocultural benefits. A key opportunity in tropical regions is the reduction of carbon emissions from deforestation and degradation.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2008
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Global Biogeochemical Cycles, American Geophysical Union (AGU), Vol. 15, No. 2 ( 2001-06), p. 267-284
    Abstract: On July 15 and 16, 1996, profiles of temperature, water vapor, carbon dioxide concentration, and its carbon isotopic composition were made within and above the convective boundary layer (CBL), near the village of Zotino in central Siberia (60°N, 89°E). On both days the CBL grew to a height of around 1000 m at midday after which little further growth was observed. This was despite high rates of sensible heat flux into the CBL from the predominantly coniferous vegetation below and was attributable to a high subsidence velocity. For all flights, marked discontinuities across the top of the CBL were observed for water vapor and CO 2 concentrations with differences between the CBL and the free troposphere above being as high as 10 mmol mol −1 and 13 μmol mol −1 , respectively. Associated with the lower CO 2 concentrations within the CBL was an enrichment of the δ 13 C in CO 2 of up to 0.7‰. Although for any one flight, fluctuations in CO 2 and δ 13 C within the CBL were small (less than 3 μmol mol −1 and 0.1 ‰); they were well correlated and suggested a photosynthetic discrimination, Δ, by the vegetation below of ∼17‰. Estimates of regional Δ based on CBL budgeting techniques suggested values ranging from 14.8 to 20.4 ‰. CBL budgeting techniques were also used to estimate regional ecosystem carbon fluxes (−3 to −9 μmol m −2 s −1 ) and evaporation rates (1−3 mmol m −2 s −1 ). Agreement with ground‐based tower measurements was reasonable, but a bootstrap error analysis suggested that errors associated with the integral CBL technique were sometimes unacceptably large, especially for estimates of regional photosynthetic 13 C discrimination and regional evaporation rates. Conditions under which CBL techniques should result in reasonably accurate estimations of regional fluxes and isotopic fractionations are evaluated.
    Type of Medium: Online Resource
    ISSN: 0886-6236 , 1944-9224
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2001
    detail.hit.zdb_id: 2021601-4
    SSG: 12
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 348, No. 6237 ( 2015-05-22), p. 895-899
    Abstract: The growth rate of atmospheric carbon dioxide (CO 2 ) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO 2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO 2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2015
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 24 ( 2007-06-12), p. 10288-10293
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 24 ( 2007-06-12), p. 10288-10293
    Abstract: CO 2 emissions from fossil-fuel burning and industrial processes have been accelerating at a global scale, with their growth rate increasing from 1.1% y −1 for 1990–1999 to 〉 3% y −1 for 2000–2004. The emissions growth rate since 2000 was greater than for the most fossil-fuel intensive of the Intergovernmental Panel on Climate Change emissions scenarios developed in the late 1990s. Global emissions growth since 2000 was driven by a cessation or reversal of earlier declining trends in the energy intensity of gross domestic product (GDP) (energy/GDP) and the carbon intensity of energy (emissions/energy), coupled with continuing increases in population and per-capita GDP. Nearly constant or slightly increasing trends in the carbon intensity of energy have been recently observed in both developed and developing regions. No region is decarbonizing its energy supply. The growth rate in emissions is strongest in rapidly developing economies, particularly China. Together, the developing and least-developed economies (forming 80% of the world's population) accounted for 73% of global emissions growth in 2004 but only 41% of global emissions and only 23% of global cumulative emissions since the mid-18th century. The results have implications for global equity.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Biological Journal of the Linnean Society, Oxford University Press (OUP), Vol. 112, No. 1 ( 2014-05), p. 16-30
    Type of Medium: Online Resource
    ISSN: 0024-4066
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2014
    detail.hit.zdb_id: 1461865-5
    detail.hit.zdb_id: 220623-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Ecology Resources, Wiley, Vol. 14, No. 5 ( 2014-09), p. 1060-1071
    Abstract: Valid fish species identification is an essential step both for fundamental science and fisheries management. The traditional identification is mainly based on external morphological diagnostic characters, leading to inconsistent results in many cases. Here, we provide a sequence reference library based on mitochondrial cytochrome c oxidase subunit I ( COI ) for a valid identification of 93 North Atlantic fish species originating from the North Sea and adjacent waters, including many commercially exploited species. Neighbour‐joining analysis based on K2P genetic distances formed nonoverlapping clusters for all species with a ≥99% bootstrap support each. Identification was successful for 100% of the species as the minimum genetic distance to the nearest neighbour always exceeded the maximum intraspecific distance. A barcoding gap was apparent for the whole data set. Within‐species distances ranged from 0 to 2.35%, while interspecific distances varied between 3.15 and 28.09%. Distances between congeners were on average 51‐fold higher than those within species. The validation of the sequence library by applying BOLD s barcode index number ( BIN ) analysis tool and a ranking system demonstrated high taxonomic reliability of the DNA barcodes for 85% of the investigated fish species. Thus, the sequence library presented here can be confidently used as a benchmark for identification of at least two‐thirds of the typical fish species recorded for the North Sea.
    Type of Medium: Online Resource
    ISSN: 1755-098X , 1755-0998
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2406833-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...