GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biodiversity Research  (866)
Material
Language
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  European Journal of Wildlife Research Vol. 69, No. 1 ( 2023-02)
    In: European Journal of Wildlife Research, Springer Science and Business Media LLC, Vol. 69, No. 1 ( 2023-02)
    Type of Medium: Online Resource
    ISSN: 1612-4642 , 1439-0574
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2140087-8
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Indian Journal of Entomology, Diva Enterprises Private Limited, Vol. 80, No. 4 ( 2018), p. 1521-
    Type of Medium: Online Resource
    ISSN: 0367-8288 , 0974-8172
    Language: English
    Publisher: Diva Enterprises Private Limited
    Publication Date: 2018
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular Biology and Evolution, Oxford University Press (OUP), Vol. 35, No. 5 ( 2018-05-01), p. 1190-1209
    Type of Medium: Online Resource
    ISSN: 0737-4038 , 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2024221-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Molecular Biology and Evolution Vol. 38, No. 11 ( 2021-10-27), p. 4792-4804
    In: Molecular Biology and Evolution, Oxford University Press (OUP), Vol. 38, No. 11 ( 2021-10-27), p. 4792-4804
    Abstract: Translational errors during protein synthesis cause phenotypic mutations that are several orders of magnitude more frequent than DNA mutations. Such phenotypic mutations may affect adaptive evolution through their interactions with DNA mutations. To study how mistranslation may affect the adaptive evolution of evolving proteins, we evolved populations of green fluorescent protein (GFP) in either high-mistranslation or low-mistranslation Escherichia coli hosts. In both hosts, we first evolved GFP under purifying selection for the ancestral phenotype green fluorescence, and then under directional selection toward the new phenotype yellow fluorescence. High-mistranslation populations evolved modestly higher yellow fluorescence during each generation of evolution than low-mistranslation populations. We demonstrate by high-throughput sequencing that elevated mistranslation reduced the accumulation of deleterious DNA mutations under both purifying and directional selection. It did so by amplifying the fitness effects of deleterious DNA mutations through negative epistasis with phenotypic mutations. In contrast, mistranslation did not affect the incidence of beneficial mutations. Our findings show that phenotypic mutations interact epistatically with DNA mutations. By reducing a population’s mutation load, mistranslation can affect an important determinant of evolvability.
    Type of Medium: Online Resource
    ISSN: 0737-4038 , 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2024221-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Molecular Biology and Evolution Vol. 38, No. 12 ( 2021-12-09), p. 5359-5375
    In: Molecular Biology and Evolution, Oxford University Press (OUP), Vol. 38, No. 12 ( 2021-12-09), p. 5359-5375
    Abstract: How biodiversity arises and can be maintained in asexual microbial populations growing on a single resource remains unclear. Many models presume that beneficial genotypes will outgrow others and purge variation via selective sweeps. Environmental structure like that found in biofilms, which are associated with persistence during infection and other stressful conditions, may oppose this process and preserve variation. We tested this hypothesis by evolving Pseudomonas aeruginosa populations in biofilm-promoting arginine media for 3 months, using both a bead model of the biofilm life cycle and planktonic serial transfer. Surprisingly, adaptation and diversification were mostly uninterrupted by fixation events that eliminate diversity, with hundreds of mutations maintained at intermediate frequencies. The exceptions included genotypes with mutator alleles that also accelerated genetic diversification. Despite the rarity of hard sweeps, a remarkable 40 genes acquired parallel mutations in both treatments and often among competing genotypes within a population. These incomplete soft sweeps include several transporters (including pitA, pntB, nosD, and pchF) suggesting adaptation to the growth media that becomes highly alkaline during growth. Further, genes involved in signal transduction (including gacS, aer2, bdlA, and PA14_71750) reflect likely adaptations to biofilm-inducing conditions. Contrary to evolution experiments that select mutations in a few genes, these results suggest that some environments may expose a larger fraction of the genome and select for many adaptations at once. Thus, even growth on a sole carbon source can lead to persistent genetic and phenotypic variation despite strong selection that would normally purge diversity.
    Type of Medium: Online Resource
    ISSN: 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2024221-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Molecular Biology and Evolution Vol. 38, No. 12 ( 2021-12-09), p. 5610-5624
    In: Molecular Biology and Evolution, Oxford University Press (OUP), Vol. 38, No. 12 ( 2021-12-09), p. 5610-5624
    Abstract: Plasmids are extrachromosomal genetic elements in prokaryotes that have been recognized as important drivers of microbial ecology and evolution. Plasmids are found in multiple copies inside their host cell where independent emergence of mutations may lead to intracellular genetic heterogeneity. The intracellular plasmid diversity is thus subject to changes upon cell division. However, the effect of plasmid segregation on plasmid evolution remains understudied. Here, we show that genetic drift during cell division—segregational drift—leads to the rapid extinction of novel plasmid alleles. We established a novel experimental approach to control plasmid allele frequency at the levels of a single cell and the whole population. Following the dynamics of plasmid alleles in an evolution experiment, we find that the mode of plasmid inheritance—random or clustered—is an important determinant of plasmid allele dynamics. Phylogenetic reconstruction of our model plasmid in clinical isolates furthermore reveals a slow evolutionary rate of plasmid-encoded genes in comparison to chromosomal genes. Our study provides empirical evidence that genetic drift in plasmid evolution occurs at multiple levels: the host cell and the population of hosts. Segregational drift has implications for the evolutionary rate heterogeneity of extrachromosomal genetic elements.
    Type of Medium: Online Resource
    ISSN: 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2024221-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Molecular Biology and Evolution Vol. 40, No. 7 ( 2023-07-05)
    In: Molecular Biology and Evolution, Oxford University Press (OUP), Vol. 40, No. 7 ( 2023-07-05)
    Abstract: Social networks can influence the ecology of gut bacteria, shaping the species composition of the gut microbiome in humans and other animals. Gut commensals evolve and can adapt at a rapid pace when colonizing healthy hosts. Here, we aimed at assessing the impact of host-to-host bacterial transmission on Escherichia coli evolution in the mammalian gut. Using an in vivo experimental evolution approach in mice, we found a transmission rate of 7% (±3% 2× standard error [2SE]) of E. coli cells per day between hosts inhabiting the same household. Consistent with the predictions of a simple population genetics model of mutation–selection–migration, the level of shared events resulting from within host evolution is greatly enhanced in cohoused mice, showing that hosts undergoing the same diet and habit are not only expected to have similar microbiome species compositions but also similar microbiome evolutionary dynamics. Furthermore, we estimated the rate of mutation accumulation of E. coli to be 3.0 × 10−3 (±0.8 × 10−3 2SE) mutations/genome/generation, irrespective of the social context of the regime. Our results reveal the impact of bacterial migration across hosts in shaping the adaptive evolution of new strains colonizing gut microbiomes.
    Type of Medium: Online Resource
    ISSN: 0737-4038 , 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2024221-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2018
    In:  Molecular Biology and Evolution Vol. 35, No. 6 ( 2018-06-01), p. 1489-1506
    In: Molecular Biology and Evolution, Oxford University Press (OUP), Vol. 35, No. 6 ( 2018-06-01), p. 1489-1506
    Type of Medium: Online Resource
    ISSN: 0737-4038 , 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2024221-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Molecular Biology and Evolution Vol. 38, No. 2 ( 2021-01-23), p. 368-379
    In: Molecular Biology and Evolution, Oxford University Press (OUP), Vol. 38, No. 2 ( 2021-01-23), p. 368-379
    Abstract: The distribution of fitness effects (DFEs) of new mutations across different environments quantifies the potential for adaptation in a given environment and its cost in others. So far, results regarding the cost of adaptation across environments have been mixed, and most studies have sampled random mutations across different genes. Here, we quantify systematically how costs of adaptation vary along a large stretch of protein sequence by studying the distribution of fitness effects of the same ≈2,300 amino-acid changing mutations obtained from deep mutational scanning of 119 amino acids in the middle domain of the heat shock protein Hsp90 in five environments. This region is known to be important for client binding, stabilization of the Hsp90 dimer, stabilization of the N-terminal-Middle and Middle-C-terminal interdomains, and regulation of ATPase–chaperone activity. Interestingly, we find that fitness correlates well across diverse stressful environments, with the exception of one environment, diamide. Consistent with this result, we find little cost of adaptation; on average only one in seven beneficial mutations is deleterious in another environment. We identify a hotspot of beneficial mutations in a region of the protein that is located within an allosteric center. The identified protein regions that are enriched in beneficial, deleterious, and costly mutations coincide with residues that are involved in the stabilization of Hsp90 interdomains and stabilization of client-binding interfaces, or residues that are involved in ATPase–chaperone activity of Hsp90. Thus, our study yields information regarding the role and adaptive potential of a protein sequence that complements and extends known structural information.
    Type of Medium: Online Resource
    ISSN: 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2024221-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Molecular Biology and Evolution, Oxford University Press (OUP), Vol. 40, No. 3 ( 2023-03-04)
    Abstract: Non-structural protein (NS1) is a 350 amino acid long conserved protein in the dengue virus. Conservation of NS1 is expected due to its importance in dengue pathogenesis. The protein is known to exist in dimeric and hexameric states. The dimeric state is involved in its interaction with host proteins and viral replication, and the hexameric state is involved in viral invasion. In this work, we performed extensive structure and sequence analysis of NS1 protein, and uncovered the role of NS1 quaternary states in its evolution. A three-dimensional modeling of unresolved loop regions in NS1 structure is performed. “Conserved” and “Variable” regions within NS1 protein were identified from sequences obtained from patient samples and the role of compensatory mutations in selecting destabilizing mutations were identified. Molecular dynamics (MD) simulations were performed to extensively study the effect of a few mutations on NS1 structure stability and compensatory mutations. Virtual saturation mutagenesis, predicting the effect of every individual amino acid substitution on NS1 stability sequentially, revealed virtual-conserved and variable sites. The increase in number of observed and virtual-conserved regions across NS1 quaternary states suggest the role of higher order structure formation in its evolutionary conservation. Our sequence and structure analysis could enable in identifying possible protein–protein interfaces and druggable sites. Virtual screening of nearly 10,000 small molecules, including FDA-approved drugs, permitted us to recognize six drug-like molecules targeting the dimeric sites. These molecules could be promising due to their stable interactions with NS1 throughout the simulation.
    Type of Medium: Online Resource
    ISSN: 0737-4038 , 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2024221-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...