GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Wiley  (14)
  • Biodiversitätsforschung  (14)
  • 1
    In: Global Ecology and Biogeography, Wiley, Vol. 20, No. 5 ( 2011-09), p. 683-694
    Materialart: Online-Ressource
    ISSN: 1466-822X
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2011
    ZDB Id: 1479787-2
    ZDB Id: 2021283-5
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Ecology, Wiley, Vol. 103, No. 10 ( 2022-10)
    Kurzfassung: Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap‐nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID‐19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site‐level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication.
    Materialart: Online-Ressource
    ISSN: 0012-9658 , 1939-9170
    URL: Issue
    RVK:
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2022
    ZDB Id: 1797-8
    ZDB Id: 2010140-5
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Wildlife Society Bulletin, Wiley, Vol. 46, No. 3 ( 2022-07)
    Kurzfassung: The need to balance economic development with impacts to Arctic wildlife has been a prominent subject since petroleum exploration began on the North Slope of Alaska, USA, in the late 1950s. The North Slope region includes polar bears ( Ursus maritimus ) of the southern Beaufort Sea subpopulation, which has experienced a long‐term decline in abundance. Pregnant polar bears dig dens in snow drifts during winter and are vulnerable to disturbance, as den abandonment and mortality of neonates may result. Maternal denning coincides with the peak season of petroleum exploration and construction, raising concerns that human activities may disrupt denning. To minimize disturbance of denning polar bears, aerial infrared (AIR) surveys are routinely used to search for dens within planned industry activity areas and that information is used to implement mitigation. Aerial infrared surveys target the heat signature emanating from dens. Despite use by industry for 〉 15 years, the efficacy of AIR and the factors that impact its ability to detect dens remains uncertain. Here, we evaluate AIR using artificial dens and observers naïve to locations to estimate detection probability and its relationship with covariates including weather variables, den characteristics, infrared sensor and altitude, and survey order to identify potential evidence of in‐flight observer learning occurring between surveys. In December 2019 we constructed 14 dens (each with an artificial heat source), and 11 control sites (disturbed sites without dens). Between December 2019 and January 2020, 3 survey crews flew 6 independent AIR surveys within the vicinity of dens and control sites and video‐recorded AIR imagery. Observers identified putative dens either in flight or during post‐flight review of recordings. We assessed detection probability with a simple Bayesian model using 3 subsets of data: 1) all detection/non‐detection data; 2) detection/non‐detection data restricted to instances where sample sites were confirmed to have been properly scanned by AIR during post‐study verification (i.e., when den locations were known); and 3) all dens visible on the recorded imagery during post‐study verification, even if they were not seen during the survey or during post‐flight review. Subsets 1 and 2 most closely resembled den surveys flown for oil and gas industry and had detection probabilities of 0.15 (95% CI = 0.08–0.23) and 0.24 (95% CI = 0.13–0.37), respectively. Detection probability was 0.41 (95% CI = 0.25–0.58) for subset 3. Higher wind speeds and larger den volume negatively influenced detection probability. Our low detection rate compared to previous studies could partially be the result of differences in study design, such as survey flight patterns. Our results suggest that AIR, as it is currently used, is unlikely to detect most polar bear dens in surveyed areas. Resource managers who use AIR should consider a suite of additional methods (e.g., habitat mapping, probabilistic den distribution, AIR methodology improvements) for minimizing impacts of industry on denning polar bears.
    Materialart: Online-Ressource
    ISSN: 2328-5540 , 2328-5540
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2022
    ZDB Id: 2067355-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Global Change Biology, Wiley, Vol. 28, No. 1 ( 2022-01), p. 245-266
    Kurzfassung: Tree rings provide an invaluable long‐term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree‐ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3‐month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3‐month seasonal windows), with concave‐down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.
    Materialart: Online-Ressource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2022
    ZDB Id: 2020313-5
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Global Change Biology, Wiley, Vol. 22, No. 6 ( 2016-06), p. 2106-2124
    Kurzfassung: Accurate ground‐based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost‐effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above‐ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power‐law models explained 84–95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand‐based biomass from allometric models of varying levels of generalization (species‐specific, plant functional type) were validated using whole‐plot harvest data from 17 contrasting stands (range: 9–356 Mg ha −1 ). Losses in efficiency of prediction were 〈 1% if generalized models were used in place of species‐specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand ‐level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost‐effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species‐specific models is only warranted when gains in accuracy of stand‐based predictions are relatively high (e.g. high‐value monocultures).
    Materialart: Online-Ressource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2016
    ZDB Id: 2020313-5
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Oikos, Wiley, Vol. 2022, No. 1 ( 2022-01)
    Kurzfassung: Predators may alter niche overlap between prey species by eliciting divergent anti‐predator behavior. Accordingly, we exploited heterogeneous gray wolf Canis lupus presence in Washington, USA, to contrast patterns of resource and dietary overlap between mule Odocoileus hemionus and white‐tailed deer O. virginianus at sites with and without resident packs. Mule deer run (stot) in a way that is less effective as a means of fleeing from predators than the galloping gait of white‐tailed deer. Consequently, mule deer manage risk from coursing predators like wolves by avoiding encounters, whereas white‐tailed deer respond to such predators by exploiting areas where they are most likely to escape pursuit. Thus, under the ‘refuge partitioning hypothesis' whereby predators reduce prey niche overlap by eliciting use of different refugia, we predicted wolf exposure to 1) decrease resource and dietary overlap between these ungulates, and 2) induce segregation consistent with each species using different parts of the landscape to reduce their wolf risk. At the home range scale, the ways in which resource overlap diminished in the wolf areas were consistent with the prey species reducing their respective risks, particularly with respect to slope, with mule deer separating from white‐tailed deer by seeking steeper areas where wolf encounters are less likely. At the within‐home range scale, the manner in which spatial overlap decreased in relation to forest cover was consistent with species‐specific risk management, with mule deer avoiding wolf encounters by shifting toward this resource. Reduced resource overlap between the deer in areas occupied by wolves did not correspond with dietary divergence. Our findings suggest that wolf risk mediates spatial but not necessarily dietary overlap between sympatric ungulates, divergent anti‐predator behavior is a non‐consumptive pathway by which predators can reduce interspecific competition among prey, and use of disparate refugia by prey may not result in dietary divergence.
    Materialart: Online-Ressource
    ISSN: 0030-1299 , 1600-0706
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2022
    ZDB Id: 2025658-9
    ZDB Id: 207359-6
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Conservation Letters, Wiley, Vol. 11, No. 2 ( 2018-03)
    Kurzfassung: Restoration of degraded landscapes has become necessary to reverse the pervasive threats from human exploitation. Restoration requires first the monitoring of progress toward any chosen goals to determine their resilience and persistence, and second to conduct in a comparable adjacent area but with less human impact the restoration of trophic structures and ecosystem processes to act as reference systems (controls) with which we compare the viability of the chosen goal. We present here the rationale and a method for predicting the trajectory of restoration and assessing its progress toward a predetermined state, the endpoint, using a restoration index . This assessment of restoration requires that we know when a predetermined endpoint has been achieved and whether the envisioned community of species and their interactions can be restored. The restoration index can use species’ presence or density, and the rate of change of ecosystem processes. The index applies to trophic levels, functional groups, successional stages, alternative states, and novel ecosystems. Also, our method allows measurement of the resilience of ecosystems to disturbance, a desired property for conservation and management. We provide global examples to illustrate these points.
    Materialart: Online-Ressource
    ISSN: 1755-263X , 1755-263X
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2018
    ZDB Id: 2430375-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: New Phytologist, Wiley, Vol. 217, No. 1 ( 2018-01), p. 8-11
    Materialart: Online-Ressource
    ISSN: 0028-646X , 1469-8137
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2018
    ZDB Id: 208885-X
    ZDB Id: 1472194-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Global Change Biology, Wiley
    Kurzfassung: Permafrost thaw causes the seasonally thawed active layer to deepen, causing the Arctic to shift toward carbon release as soil organic matter becomes susceptible to decomposition. Ground subsidence initiated by ice loss can cause these soils to collapse abruptly, rapidly shifting soil moisture as microtopography changes and also accelerating carbon and nutrient mobilization. The uncertainty of soil moisture trajectories during thaw makes it difficult to predict the role of abrupt thaw in suppressing or exacerbating carbon losses. In this study, we investigated the role of shifting soil moisture conditions on carbon dioxide fluxes during a 13‐year permafrost warming experiment that exhibited abrupt thaw. Warming deepened the active layer differentially across treatments, leading to variable rates of subsidence and formation of thermokarst depressions. In turn, differential subsidence caused a gradient of moisture conditions, with some plots becoming consistently inundated with water within thermokarst depressions and others exhibiting generally dry, but more variable soil moisture conditions outside of thermokarst depressions. Experimentally induced permafrost thaw initially drove increasing rates of growing season gross primary productivity (GPP), ecosystem respiration ( R eco ), and net ecosystem exchange (NEE) (higher carbon uptake), but the formation of thermokarst depressions began to reverse this trend with a high level of spatial heterogeneity. Plots that subsided at the slowest rate stayed relatively dry and supported higher CO 2 fluxes throughout the 13‐year experiment, while plots that subsided very rapidly into the center of a thermokarst feature became consistently wet and experienced a rapid decline in growing season GPP, R eco , and NEE (lower carbon uptake or carbon release). These findings indicate that Earth system models, which do not simulate subsidence and often predict drier active layer conditions, likely overestimate net growing season carbon uptake in abruptly thawing landscapes.
    Materialart: Online-Ressource
    ISSN: 1354-1013 , 1365-2486
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2023
    ZDB Id: 2020313-5
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Fish and Fisheries, Wiley, Vol. 19, No. 4 ( 2018-07), p. 677-697
    Kurzfassung: The construction of fishways for upstream and downstream connectivity is the preferred mitigation measure for hydropower dams and other riverine barriers. Yet empirical evidence for effective design criteria for many species is missing. We therefore assembled a group of international fishway designers and combined their knowledge with available empirical data using a formal expert elicitation protocol and Bayesian networks. The expert elicitation method we use minimizes biases typically associated with such approaches. Demonstrating our application with a case‐study on the temperate Southern Hemisphere, we use the resulting probabilistic models to predict the following, given alternative design parameters: (i) the effectiveness of technical fishways for upstream movement of migratory fish; (ii) habitat quality in nature‐like bypasses for resident fish; and (iii) rates of mortality during downstream passage of all fish through turbines and spillways. The Fish Passage Network (Fish‐Net) predicts that fishways for native species could be near 0% or near 100% efficient depending on their design, suggesting great scope for adequate mitigation. Sensitivity analyses revealed the most important parameters as follows: (i) design of attraction and entrance features of technical fishways for upstream migration; (ii) habitat preferences of resident fish in nature‐like bypasses; and (iii) susceptibility of fish to barotrauma and blade strike during turbine passage. Numerical modelling predicted that mortality rates of small‐bodied fish (50–100 mm TL ) due to blade strike may be higher for Kaplan than Francis turbines. Our findings can be used to support environmentally sustainable decisions in the planning, design and monitoring stages of hydropower development.
    Materialart: Online-Ressource
    ISSN: 1467-2960 , 1467-2979
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2018
    ZDB Id: 2024569-5
    SSG: 21,3
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...