GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Transactions of the American Fisheries Society, Wiley, Vol. 135, No. 1 ( 2006-01), p. 241-250
    Abstract: Studies of the pantophysin ( Pan I *) locus in Atlantic cod Gadus morhua and other marine gadoids indicate that the locus is under positive selection; in Atlantic cod, genotypic variation at this locus has been linked to differences in growth. Here, we present preliminary data comparing the growth and condition of different Atlantic cod Pan I* genotypes within families held under seminatural mesocosm conditions. Larvae from three full‐sibling families carrying Pan I*bb or Pan I*ab genotypes were reared for 10 weeks in two mesocosms. Multivariate analysis of variance indicated that larvae carrying the Pan I*ab genotype exhibited significantly higher standard length, dry weight, and RNA: DNA ratio (condition factor) than did larvae that carried the Pan I*bb genotype, potentially indicating selection. The influence of linked loci cannot be excluded; indeed, the absence of a significant correlation between genotype and growth in one family may substantiate this. The lack of differences in survival among genotypes indicates that moderate selective effects are acting primarily through size‐specific mortality and fecundity. The proposed putative fitness effects, together with documented marked geographic differentiation in the wild, have implications for Atlantic cod population structure, effective migration rates, recruitment, and local adaptation, which are of particular relevance in a species threatened by continuing exploitation and rising sea temperatures.
    Type of Medium: Online Resource
    ISSN: 0002-8487 , 1548-8659
    Language: English
    Publisher: Wiley
    Publication Date: 2006
    detail.hit.zdb_id: 2192460-0
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Change Biology, Wiley, Vol. 24, No. 1 ( 2018-01), p. 526-535
    Abstract: Productivity of marine fish stocks is known to be affected by environmental and ecological drivers, and global climate change is anticipated to alter recruitment success of many stocks. While the direct effects of environmental drivers on fish early life stage survival can be quantified experimentally, indirect effects in marine ecosystems and the role of adaptation are still highly uncertain. We developed an integrative model for the effects of ocean warming and acidification on the early life stages of Atlantic cod in the Barents Sea, termed SCREI ( Simulator of Cod Recruitment under Environmental Influences ). Experimental results on temperature and CO 2 effects on egg fertilization, egg and larval survival and development times are incorporated. Calibration using empirical time series of egg production, temperature, food and predator abundance reproduces age‐0 recruitment over three decades. We project trajectories of recruitment success under different scenarios and quantify confidence limits based on variation in experiments. A publicly accessible web version of the SCREI model can be run under www.oceanchange.uni-bremen.de/ ; SCREI . Severe reductions in average age‐0 recruitment success of Barents Sea cod are projected under uncompensated warming and acidification toward the middle to end of this century. Although high population stochasticity was found, considerable rates of evolutionary adaptation to acidification and shifts in organismal thermal windows would be needed to buffer impacts on recruitment. While increases in food availability may mitigate short‐term impacts, an increase in egg production achieved by stock management could provide more long‐term safety for cod recruitment success. The SCREI model provides a novel integration of multiple driver effects in different life stages and enables an estimation of uncertainty associated with interindividual and ecological variation. The model thus helps to advance toward an improved empirical foundation for quantifying climate change impacts on marine fish recruitment, relevant for ecosystem‐based assessments of marine systems under climate change.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Global Change Biology, Wiley, Vol. 25, No. 3 ( 2019-03), p. 839-849
    Abstract: In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod ( Gadus morhua ) were found to be heavily impaired by end‐of‐century levels of ocean acidification. Here, we analysed larval growth among 35–36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO 2 treatments (ambient: 503 µatm, elevated: 1,179 µatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO 2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO 2 treatment compared to the ambient CO 2 treatment. However, the elevated CO 2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments will suffer from impairments later during ontogeny. Our study highlights important allocation trade‐off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Ecological Applications, Wiley, Vol. 24, No. 5 ( 2014-07), p. 1131-1143
    Type of Medium: Online Resource
    ISSN: 1051-0761
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2010123-5
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Diversity and Distributions, Wiley, Vol. 25, No. 4 ( 2019-04), p. 603-612
    Abstract: Numerous regions worldwide are highly impacted by anthropogenic activities and globalization, with climate change and species introductions being among the greatest stressors to biodiversity and ecosystems. A main donor region of non‐indigenous species (NIS) for numerous European water bodies, as well as in the North American Great Lakes is the Ponto‐Caspian region (i.e., Black, Azov and Caspian Seas), with some of those species having significant impact on local communities and ecosystem functioning. Location Northern European, Ponto‐Caspian and North American regions. Methods To determine environmental tolerance of native species and related NIS under current and future global warming scenarios of the Baltic Sea, we conducted common garden experiments to test temperature tolerance of three euryhaline gammarid species: one Baltic ( Gammarus oceanicus ), one Ponto‐Caspian ( Pontogammarus maeoticus ) and one North American species ( Gammarus tigrinus ) in two different salinities. Results Our results determined that mortality of P. maeoticus in all temperature treatments (i.e., increased, control, and decreased) at the end of both experiments (i.e., conducted in salinities of 10 and 16 g/kg) was lower when compared to mortality of G. oceanicus and (c) G. tigrinus . The highest mortality was observed for G. oceanicus , reaching 100% in both experiments in the increased temperature treatment. Main conclusions Due to the high environmental tolerance of the Ponto‐Caspian species tested in this study, as well as the fact that Ponto‐Caspian species evolved in environmentally variable habitats and currently inhabit warmer waters than species from North America and Northern Europe, we suggest that species from the Ponto‐Caspian region may benefit from global warming when invading new areas. Those new invasions may, in the best case scenario, increase biodiversity of the Baltic Sea. However, if notorious invaders arrive, they may have a significant impact on local communities and ecosystem functioning.
    Type of Medium: Online Resource
    ISSN: 1366-9516 , 1472-4642
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020139-4
    detail.hit.zdb_id: 1443181-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2007
    In:  Limnology and Oceanography Vol. 52, No. 5 ( 2007-09), p. 2062-2071
    In: Limnology and Oceanography, Wiley, Vol. 52, No. 5 ( 2007-09), p. 2062-2071
    Type of Medium: Online Resource
    ISSN: 0024-3590
    Language: English
    Publisher: Wiley
    Publication Date: 2007
    detail.hit.zdb_id: 2033191-5
    detail.hit.zdb_id: 412737-7
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...