GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (2)
  • Biodiversity Research  (2)
Material
Publisher
  • Springer Science and Business Media LLC  (2)
Language
Years
FID
  • Biodiversity Research  (2)
  • 1
    In: Biotechnology for Biofuels, Springer Science and Business Media LLC, Vol. 14, No. 1 ( 2021-12-14)
    Abstract: Diatoms are well known for high photosynthetic efficiency and rapid growth rate, which are not only important oceanic primary producer, but also ideal feedstock for microalgae industrialization. Their high success is mainly due to the rapid response of photosynthesis to inorganic carbon fluctuations. Thus, an in-depth understanding of the photosynthetic carbon fixation mechanism of diatoms will be of great help to microalgae-based applications. This work directed toward the analysis of whether C4 photosynthetic pathway functions in the model marine diatom Phaeodactylum tricornutum , which possesses biophysical CO 2 -concentrating mechanism (CCM) as well as metabolic enzymes potentially involved in C4 photosynthetic pathway. Results For P. tricornutum , differential proteome, enzyme activities and transcript abundance of carbon metabolism-related genes especially biophysical and biochemical CCM-related genes in response to different concentrations of CO 2 were tracked in this study. The upregulated protein abundance of a carbonic anhydrases and a bicarbonate transporter suggested biophysical CCM activated under low CO 2 (LC). The upregulation of a number of key C4-related enzymes in enzymatic activity, transcript and protein abundance under LC indicated the induction of a mitochondria-mediated CCM in P. tricornutum . Moreover, protein abundance of a number of glycolysis, tricarboxylic acid cycle, photorespiration and ornithine–urea cycle related proteins upregulated under LC, while numbers of proteins involved in the Calvin cycle and pentose phosphate pathway were downregulated. Under high CO 2 (HC), protein abundance of most central carbon metabolism and photosynthesis-related proteins were upregulated. Conclusions The proteomic and biochemical responses to different concentrations of CO 2 suggested multiple carbon metabolism strategies exist in P. tricornutum . Namely, LC might induce a mitochondrial-mediated C4-like CCM and the improvement of glycolysis, tricarboxylic acid cycle, photorespiration and ornithine–urea cycle activity contribute to the energy supply and carbon and nitrogen recapture in P. tricornutum to cope with the CO 2 limitation, while P. tricornutum responds to the HC environment by improving photosynthesis and central carbon metabolism activity. These findings can not only provide evidences for revealing the global picture of biophysical and biochemical CCM in P. tricornutum , but also provide target genes for further microalgal strain modification to improve carbon fixation and biomass yield in algal-based industry.
    Type of Medium: Online Resource
    ISSN: 1754-6834
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 3107320-7
    detail.hit.zdb_id: 2421351-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: BMC Biology, Springer Science and Business Media LLC, Vol. 19, No. 1 ( 2021-12)
    Abstract: Diatoms usually dominate phytoplankton blooms in open oceans, exhibiting extremely high population densities. Although the iron uptake rate of diatoms largely determines the magnitude and longevity of diatom blooms, the underlying mechanisms regulating iron uptake remain unclear. Results The transcription of two iron uptake proteins, ISIP2a and ISIP1, in the marine diatom Phaeodactylum tricornutum was enhanced with increasing cell density, whereas the cellular iron content showed the opposite trend. When compared with the wild-type strain, knockdown of ISIP2a resulted in 43% decrease in cellular iron content, implying the involvement of ISIP2a in iron uptake under high-cell density conditions. Incubation of the diatom cells with sonicated cell lysate conditioned by different cell densities did not affect ISIP2a and ISIP1 expression, ruling out regulation via chemical cues. In contrast, ISIP2a and ISIP1 transcription were strongly induced by red light. Besides, chlorophyll fluorescence excited from the blue light was also positively correlated with population density. Subsequently, a “sandwich” illumination incubator was designed to filter out stray light and ensure that the inner layer cells only receive the emitted chlorophyll fluorescence from outer layers, and the results showed that the increase in outer cell density significantly elevated ISIP2a and ISIP1 transcription in inner layer cells. In situ evidence from Tara oceans also showed positively correlated between diatom ISIP transcripts and chlorophyll content. Conclusions This study shows that chlorophyll fluorescence derived from neighboring cells is able to upregulate ISIP2a and ISIP1 expression to facilitate iron assimilation under high-cell density. These results provide novel insights into biotic signal sensing in phytoplankton, which can help to elucidate the underlying mechanisms of marine diatom blooms.
    Type of Medium: Online Resource
    ISSN: 1741-7007
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2133020-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...