GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Society for Neuroscience  (5)
  • Biodiversitätsforschung  (5)
  • 1
    Online-Ressource
    Online-Ressource
    Society for Neuroscience ; 2006
    In:  The Journal of Neuroscience Vol. 26, No. 36 ( 2006-09-06), p. 9250-9263
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 26, No. 36 ( 2006-09-06), p. 9250-9263
    Kurzfassung: The death of motor neurons in amyotrophic lateral sclerosis (ALS) is thought to result from the interaction of a variety of factors including excitotoxicity, accumulation of toxic proteins, and abnormal axonal transport. Previously, we found that the susceptibility of motor neurons to excitotoxic insults can be limited by inhibiting signals evoked by brain-derived neurotrophic factor (BDNF) activation of the receptor tyrosine kinase B (TrkB). Here we show that this can be achieved by direct kinase inhibition or by blockade of a transactivation pathway that uses adenosine A2a receptors and src-family kinases (SFKs). Downstream signaling cascades (such as mitogen-activated protein kinase and phosphatidylinositol-3 kinase) are inhibited by these blockers. In addition to protecting motor neurons from excitotoxic insult, these agents also prevent toxicity that follows from the expression of mutant proteins (G85R superoxide dismutase 1; G59S p150 glued ) that cause familial motor neuron disease. TrkB, adenosine A2a receptors, and SFKs associate into complexes in lipid raft and nonlipid raft membranes and the signaling from lipids rafts may be particularly important because their disruption by cholesterol depletion blocks the ability of BDNF to render motor neurons vulnerable to insult. The neuroprotective versatility of Trk antagonism suggests that it may have broad utility in the treatment of ALS patients.
    Materialart: Online-Ressource
    ISSN: 0270-6474 , 1529-2401
    Sprache: Englisch
    Verlag: Society for Neuroscience
    Publikationsdatum: 2006
    ZDB Id: 1475274-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 31, No. 20 ( 2011-05-18), p. 7497-7510
    Kurzfassung: Many evolutionarily significant behaviors, such as mating, involve dynamic interactions with animate targets. This raises the question of what features of neural circuit design are essential to support these complex types of behavior. The Caenorhabditis elegans male uses 18 ray sensilla of the tail to coordinate mate apposition behavior, which facilitates a systematic search of the hermaphrodite surface for the vulva. Precisely how ray neuron types, A and B, robustly endow the male with a high degree of spatial and temporal precision is unknown. We show that the appositional postures that drive the search trajectory reflect the complex interplay of ray neuron type-induced motor outputs. Cell-type-specific ablations reveal that the A-neurons are required for all appositional postures. Their activity is instructive because the A-neurons can induce scanning- and turning-like appositional postures when artificially activated with channelrhodopsin (ChR2). B-neurons are essential only for initiation of the behavior in which they enhance male responsiveness to hermaphrodite contact. When artificially activated using ChR2, A- and B-neurons produce different tail ventral curl postures. However, when coactivated, A-neuron posture dominates, limiting B-neuron contributions to initiation or subsequent postures. Significantly, males lacking the majority of rays retain a high degree of postural control, indicating significant functional resilience in the system. Furthermore, eliminating a large number of male-specific ray neuron targets only partially attenuates tail posture control revealing that gender-common cells make an important contribution to the behavior. Thus, robustness may be a crucial feature of circuits underlying complex behaviors, such as mating, even in simple animals.
    Materialart: Online-Ressource
    ISSN: 0270-6474 , 1529-2401
    Sprache: Englisch
    Verlag: Society for Neuroscience
    Publikationsdatum: 2011
    ZDB Id: 1475274-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 41, No. 7 ( 2021-02-17), p. 1371-1392
    Kurzfassung: In neurons, mitochondria are transported by molecular motors throughout the cell to form and maintain functional neural connections. These organelles have many critical functions in neurons and are of high interest as their dysfunction is associated with disease. While the mechanics and impact of anterograde mitochondrial movement toward axon terminals are beginning to be understood, the frequency and function of retrograde (cell body directed) mitochondrial transport in neurons are still largely unexplored. While existing evidence indicates that some mitochondria are retrogradely transported for degradation in the cell body, the precise impact of disrupting retrograde transport on the organelles and the axon was unknown. Using long-term, in vivo imaging, we examined mitochondrial motility in zebrafish sensory and motor axons. We show that retrograde transport of mitochondria from axon terminals allows replacement of the axon terminal population within a day. By tracking these organelles, we show that not all mitochondria that leave the axon terminal are degraded; rather, they persist over several days. Disrupting retrograde mitochondrial flux in neurons leads to accumulation of aged organelles in axon terminals and loss of cell body mitochondria. Assays of neural circuit activity demonstrated that disrupting mitochondrial transport and function has no effect on sensory axon terminal activity but does negatively impact motor neuron axons. Taken together, our work supports a previously unappreciated role for retrograde mitochondrial transport in the maintenance of a homeostatic distribution of mitochondria in neurons and illustrates the downstream effects of disrupting this process on sensory and motor circuits. SIGNIFICANCE STATEMENT Disrupted mitochondrial transport has been linked to neurodegenerative disease. Retrograde transport of this organelle has been implicated in turnover of aged organelles through lysosomal degradation in the cell body. Consistent with this, we provide evidence that retrograde mitochondrial transport is important for removing aged organelles from axons; however, we show that these organelles are not solely degraded, rather they persist in neurons for days. Disrupting retrograde mitochondrial transport impacts the homeostatic distribution of mitochondria throughout the neuron and the function of motor, but not sensory, axon synapses. Together, our work shows the conserved reliance on retrograde mitochondrial transport for maintaining a healthy mitochondrial pool in neurons and illustrates the disparate effects of disrupting this process on sensory versus motor circuits.
    Materialart: Online-Ressource
    ISSN: 0270-6474 , 1529-2401
    Sprache: Englisch
    Verlag: Society for Neuroscience
    Publikationsdatum: 2021
    ZDB Id: 1475274-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Society for Neuroscience ; 2021
    In:  The Journal of Neuroscience Vol. 41, No. 44 ( 2021-11-03), p. 9082-9098
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 41, No. 44 ( 2021-11-03), p. 9082-9098
    Kurzfassung: Hippocampal CA2, an inconspicuously positioned area between the well-studied CA1 and CA3 subfields, has captured research interest in recent years because of its role in social memory formation. However, the role of cholinergic inputs to the CA2 area for the regulation of synaptic plasticity remains to be fully understood. We show that cholinergic receptor activation with the nonselective cholinergic agonist, carbachol (CCh), triggers a protein synthesis-dependent and NMDAR-independent long-term synaptic depression (CCh-LTD) at entorhinal cortical (EC)-CA2 and Schaffer collateral (SC)-CA2 synapses in the hippocampus of adult male Wistar rats. The activation of muscarinic acetylcholine receptors (mAChRs) is critical for the induction of CCh-LTD with the results suggesting an involvement of M3 and M1 mAChRs in the early facilitation of CCh-LTD, while nicotinic AChR activation plays a role in the late maintenance of CCh-LTD at CA2 synapses. Remarkably, we find that CCh priming lowers the threshold for the subsequent induction of persistent long-term potentiation (LTP) of synaptic transmission at EC-CA2 and the plasticity-resistant SC-CA2 pathways. The effects of such a cholinergic-dependent synaptic depression on subsequent LTP at EC-CA2 and SC-CA2 synapses have not been previously explored. Collectively, the results demonstrate that CA2 synaptic learning rules are regulated in a metaplastic manner, whereby modifications triggered by prior cholinergic stimulation can dictate the outcome of future plasticity events. Moreover, the reinforcement of LTP at EC inputs to CA2 following the priming stimulus coexists with concurrent sustained CCh-LTD at the SC-CA2 pathway and is dynamically scaled by modulation of SC-CA2 synaptic transmission. SIGNIFICANCE STATEMENT The release of the neuromodulator acetylcholine is critically involved in processes of hippocampus-dependent memory formation. Cholinergic afferents originating in the medial septum and diagonal bands of Broca terminating in the hippocampal area CA2 might play an important role in the modulation of area-specific synaptic plasticity. Our findings demonstrate that cholinergic receptor activation induces an LTD of synaptic transmission at entorhinal cortical- and Schaffer collateral-CA2 synapses. This cholinergic activation-mediated LTD displays a bidirectional metaplastic switch to LTP on a future timescale. This suggests that such bidirectional synaptic modifications triggered by the dynamic modulation of tonic cholinergic receptor activation may support the formation of CA2-dependent memories given the increased hippocampal cholinergic tone during active wakefulness observed in exploratory behavior.
    Materialart: Online-Ressource
    ISSN: 0270-6474 , 1529-2401
    Sprache: Englisch
    Verlag: Society for Neuroscience
    Publikationsdatum: 2021
    ZDB Id: 1475274-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 41, No. 34 ( 2021-08-25), p. 7171-7181
    Materialart: Online-Ressource
    ISSN: 0270-6474 , 1529-2401
    Sprache: Englisch
    Verlag: Society for Neuroscience
    Publikationsdatum: 2021
    ZDB Id: 1475274-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...