GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (2)
  • Biodiversity Research  (2)
Material
Publisher
  • Proceedings of the National Academy of Sciences  (2)
Language
Years
FID
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2011
    In:  Proceedings of the National Academy of Sciences Vol. 108, No. 9 ( 2011-03), p. 3707-3712
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 9 ( 2011-03), p. 3707-3712
    Abstract: A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing as well as detection of coding SNPs and noncoding transcripts. The performance of the array was examined and compared with mRNA sequencing (RNA-Seq) results over multiple independent replicates of liver and muscle samples. Compared with RNA-Seq of 46 million uniquely mappable reads per replicate, the GG-H array is highly reproducible in estimating gene and exon abundance. Although both platforms detect similar expression changes at the gene level, the GG-H array is more sensitive at the exon level. Deeper sequencing is required to adequately cover low-abundance transcripts. The array has been implemented in a multicenter clinical program and has generated high-quality, reproducible data. Considering the clinical trial requirements of cost, sample availability, and throughput, the GG-H array has a wide range of applications. An emerging approach for large-scale clinical genomic studies is to first use RNA-Seq to the sufficient depth for the discovery of transcriptome elements relevant to the disease process followed by high-throughput and reliable screening of these elements on thousands of patient samples using custom-designed arrays.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 22 ( 2010-06), p. 9923-9928
    Abstract: Time-course microarray experiments are capable of capturing dynamic gene expression profiles. It is important to study how these dynamic profiles depend on the multiple factors that characterize the experimental condition under which the time course is observed. Analytic methods are needed to simultaneously handle the time course and factorial structure in the data. We developed a method to evaluate factor effects by pooling information across the time course while accounting for multiple testing and nonnormality of the microarray data. The method effectively extracts gene-specific response features and models their dependency on the experimental factors. Both longitudinal and cross-sectional time-course data can be handled by our approach. The method was used to analyze the impact of age on the temporal gene response to burn injury in a large-scale clinical study. Our analysis reveals that 21% of the genes responsive to burn are age-specific, among which expressions of mitochondria and immunoglobulin genes are differentially perturbed in pediatric and adult patients by burn injury. These new findings in the body’s response to burn injury between children and adults support further investigations of therapeutic options targeting specific age groups. The methodology proposed here has been implemented in R package “TANOVA” and submitted to the Comprehensive R Archive Network at http://www.r-project.org/ . It is also available for download at http://gluegrant1.stanford.edu/TANOVA/ .
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...