GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Portland Press Ltd.  (1)
  • Biodiversity Research  (1)
Material
Publisher
  • Portland Press Ltd.  (1)
Person/Organisation
Language
Years
FID
  • Biodiversity Research  (1)
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Portland Press Ltd. ; 2005
    In:  Biochemical Journal Vol. 389, No. 3 ( 2005-08-01), p. 611-617
    In: Biochemical Journal, Portland Press Ltd., Vol. 389, No. 3 ( 2005-08-01), p. 611-617
    Abstract: Mechanisms of spindle pole formation rely on minus-end-directed motor proteins. γ-Tubulin is present at the centre of poles, but its function during pole formation is completely unknown. To address the role of γ-tubulin in spindle pole formation, we overexpressed GFP (green fluorescent protein)-fused γ-tubulin (γ-Tu-GFP) in Xenopus oocytes and produced self-assembled mitotic asters in the oocyte extracts. γ-Tu-GFP associated with endogenous α-, β- and γ-tubulin, suggesting that it acts in the same manner as that of endogenous γ-tubulin. During the process of aster formation, γ-Tu-GFP aggregated as dots on microtubules, and then the dots were translocated to the centre of the aster along microtubules in a manner dependent on cytoplasmic dynein activity. Inhibition of the function of γ-tubulin by an anti-γ-tubulin antibody resulted in failure of microtubule organization into asters. This defect was restored by overexpression of γ-Tu-GFP, confirming the necessity of γ-tubulin in microtubule recruitment for aster formation. We also examined the effects of truncated γ-tubulin mutants, which are difficult to solubly express in other systems, on aster formation. The middle part of γ-tubulin caused abnormal organization of microtubules in which minus ends of microtubules were not tethered, but dispersed. An N-terminus-deleted mutant prevented recruitment of microtubules into asters, similar to the effect of the anti-γ-tubulin antibody. The results indicate possible roles of γ-tubulin in spindle pole formation and show that the system developed in the present study could be useful for analysing roles of many proteins that are difficult to solubly express.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2005
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...