GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Portland Press Ltd.  (10)
  • Biodiversity Research  (10)
  • 1
    In: Bioscience Reports, Portland Press Ltd., Vol. 38, No. 5 ( 2018-10-31)
    Abstract: MiRNA (miR)-206 plays a tumor suppressor role in various cancer types. Here, we investigated whether miR-206 is involved in prostaglandin E2 (PGE2)-induced epithelial–mesenchymal transition (EMT) in colorectal cancer (CRC) cells through the targetting of transmembrane 4 L six family member 1 (TM4SF1). The effect of PGE2 on growth and apoptosis of CRC cells was evaluated using the MTT assay and flow cytometry analysis, respectively. TM4SF1 and miR-206 expression levels were determined with quantitative polymerase chain reaction (qRT-PCR) in CRC tissues and cell lines. The concentration of PGE2 in the serum of CRC patients and healthy controls was measured with an ELISA kit. A miR-206 or TM4SF1 construct was transfected into cells with PGE2. Transwell migration and invasion assays were used to examine cell migration and invasion properties. Additionally, a luciferase assay was performed to determine whether TM4SF1 was directly targetted by miR-206. We found that miR-206 was down-regulated and TM4SF1 was up-regulated in human CRC tissues and cell lines. Moreover, miR-206 was negatively correlated with TM4SF1 expression. Bioinformatics analysis and a luciferase reporter assay revealed that miR-206 directly targetted the 3′-untranslated region (UTR) of TM4SF1, and TM4SF1 expression was reduced by miR-206 overexpression at both the mRNA and protein levels. Additionally, PGE2 significantly suppressed the expression of miR-206 and increased the expression of TM4SF1 in CRC cells. PGE2 induction led to enhanced CRC cell proliferation, migration, and invasion. Moreover, the overexpression of miR-206 decreased CRC cell proliferation, migration, and invasion compared with control group in PGE2-induced cells, and these effects could be recovered by the overexpression of TM4SF1. Overexpression of miR-206 also suppressed the expression of β-catenin, VEGF, MMP-9, Snail, and Vimentin and enhanced E-cadherin expression in PGE2-induced cells. These results could be reversed by the overexpression of TM4SF1. At last, up-regulation of miR-206 suppressed expression of p-AKT and p-ERK by targetting TM4SF1 in PGE2-induced cells. Our results provide further evidence that miR-206 has a protective effect on PGE2-induced colon carcinogenesis.
    Type of Medium: Online Resource
    ISSN: 0144-8463 , 1573-4935
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2018
    detail.hit.zdb_id: 2014993-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Portland Press Ltd. ; 2001
    In:  Bioscience Reports Vol. 21, No. 3 ( 2001-06-01), p. 341-352
    In: Bioscience Reports, Portland Press Ltd., Vol. 21, No. 3 ( 2001-06-01), p. 341-352
    Abstract: We have investigated a novel method to monitor real changes of intracellular ROS by the use of CMH2TMRos (a reduced form of MitoTracker orange) in Swiss 3T3 fibroblasts. Arachidonic acid induced a rapid increase of CMTMRos fluorescence with a maximal elevation at 120–150 sec, which was determined by scanning every 10 sec with a confocal microscope. The fluorescence increase by arachidonic acid was completely inhibited by 2-MPG but not by catalase, indicating a major contribution of superoxide to the oxidation of CMH2TMRos. Incubation with glucose oxidase, exogenous H2O2, KO2 and lysophosphatidic acid also increased the CMTMRos fluorescence, which was blocked by 2-MPG. These results suggested that CMH2TMRos is a useful fluorophore for real-time monitoring of intracellular ROS and also indicated that CMH2TMRos detects primarily superoxide in cells even though the fluorophore can be oxidized by both superoxide and H2O2.
    Type of Medium: Online Resource
    ISSN: 0144-8463 , 1573-4935
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2001
    detail.hit.zdb_id: 2014993-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Bioscience Reports, Portland Press Ltd., Vol. 32, No. 5 ( 2012-10-01), p. 455-463
    Abstract: RNase H (retroviral ribonuclease H) cleaves the phosphate backbone of the RNA template within an RNA/DNA hybrid to complete the synthesis of double-stranded viral DNA. In the present study we have determined the complete structure of the RNase H domain from XMRV (xenotropic murine leukaemia virus-related virus) RT (reverse transcriptase). The basic protrusion motif of the XMRV RNase H domain is folded as a short helix and an adjacent highly bent loop. Structural superposition and subsequent mutagenesis experiments suggest that the basic protrusion motif plays a role in direct binding to the major groove in RNA/DNA hybrid, as well as in establishing the co-ordination among modules in RT necessary for proper function.
    Type of Medium: Online Resource
    ISSN: 0144-8463 , 1573-4935
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2012
    detail.hit.zdb_id: 2014993-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Biochemical Journal, Portland Press Ltd., Vol. 382, No. 2 ( 2004-09-01), p. 631-639
    Abstract: The platelet-derived growth factor receptor-β (PDGFR-β) has a number of conserved cysteine residues on its cytoplasmic domain. We have examined whether the cysteine residues play a role in the enzymic function of PDGFR-β. We found that N-ethylmaleimide, which selectively alkylates free thiol groups of cysteine residues, completely inhibited the kinase activity of PDGFR-β. We then identified, through site-directed mutagenesis, two conserved cysteine residues critical for the enzymic function of PDGFR-β. Cys to Ser mutations for either Cys-822, positioned in the catalytic loop, or Cys-940, located in the C-terminal kinase subdomain, significantly reduced the activities of autophosphorylation and phosphorylation towards exogenous substrates. The non-reducing gel analysis indicated that neither of these cysteine residues contributes to the kinase activity by disulphide-bond formation. In addition, the individual mutation of Cys-822 and Cys-940 had no effect on protein stability or the binding of substrates or ATP, implying that these cysteine residues are involved in enzyme catalysis. Finally, proteolytic cleavage assays showed that the mutation of Cys-940, but not Cys-822, induced a protein conformational change. Taken together, these results suggest that Cys-940 contributes to the catalytic activity of PDGFR-β by playing a structural role, whereas Cys-822 contributes through a different mechanism.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2004
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Biochemical Journal, Portland Press Ltd., Vol. 446, No. 3 ( 2012-09-15), p. 359-371
    Abstract: HD (Huntington's disease) is a devastating neurodegenerative genetic disorder caused by abnormal expansion of CAG repeats in the HTT (huntingtin) gene. We have recently established two iPSC (induced pluripotent stem cell) lines derived from a HD patient carrying 72 CAG repeats (HD-iPSC). In order to understand the proteomic profiles of HD-iPSCs, we have performed comparative proteomic analysis among normal hESCs (human embryonic stem cells; H9), iPSCs (551-8) and HD-iPSCs at undifferentiated stages, and identified 26 up- and down-regulated proteins. Interestingly, these differentially expressed proteins are known to be involved in different biological processes, such as oxidative stress, programmed cell death and cellular oxygen-associated proteins. Among them, we found that oxidative stress-related proteins, such as SOD1 (superoxide dismutase 1) and Prx (peroxiredoxin) families are particularly affected in HD-iPSCs, implying that HD-iPSCs are highly susceptible to oxidative stress. We also found that BTF3 (basic transcription factor 3) is up-regulated in HD-iPSCs, which leads to the induction of ATM (ataxia telangiectasia mutated), followed by activation of the p53-mediated apoptotic pathway. In addition, we observed that the expression of cytoskeleton-associated proteins was significantly reduced in HD-iPSCs, implying that neuronal differentiation was also affected. Taken together, these results demonstrate that HD-iPSCs can provide a unique cellular disease model system to understand the pathogenesis and neurodegeneration mechanisms in HD, and the identified proteins from the present study may serve as potential targets for developing future HD therapeutics.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2012
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Biochemical Journal, Portland Press Ltd., Vol. 433, No. 1 ( 2011-01-01), p. 155-161
    Abstract: PPAR (peroxisome-proliferator-activated receptor) γ, a nuclear receptor, can be conjugated with SUMO (small ubiquitin-like modifier), which results in the negative regulation of its transcriptional activity. In the present study, we tested whether de-SUMOylation of PPARγ affects the expression of PPARγ target genes in mouse muscle cells and investigated the mechanism by which de-SUMOylation increases PPARγ transcriptional activity. We found that the SUMO-specific protease SENP2 [SUMO1/sentrin/SMT3 (suppressor of mif two 3 homologue 1)-specific peptidase 2] effectively de-SUMOylates PPARγ–SUMO conjugates. Overexpression of SENP2 in C2C12 cells increased the expression of some PPARγ target genes, such as FABP3 (fatty-acid-binding protein 3) and CD36 (fatty acid translocase), both in the absence and presence of rosiglitazone. In contrast, overexpression of SENP2 did not affect the expression of another PPARγ target gene ADRP (adipose differentiation-related protein). De-SUMOylation of PPARγ increased ChIP (chromatin immunoprecipitation) of both a recombinant PPRE (PPAR-response element) and endogenous PPREs of the target genes CD36 and FABP3, but ChIP of the PPRE in the ADRP promoter was not affected by SENP2 overexpression. In conclusion, these results indicate that SENP2 de-SUMOylates PPARγ in myotubes, and de-SUMOylation of PPARγ selectively increases the expression of some PPARγ target genes.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2011
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Biochemical Journal, Portland Press Ltd., Vol. 388, No. 1 ( 2005-05-15), p. 7-15
    Abstract: Double-strand breaks (DSBs) of chromosomal DNA trigger the cellular response that activates the pathways for DNA repair and cell-cycle checkpoints, and sometimes the pathways leading to cell death if the damage is too severe to be tolerated. Evidence indicates that, upon generation of DNA DSBs, many nuclear proteins that are involved in DNA repair and checkpoints are recruited to chromatin around the DNA lesions. In the present study we used a proteomics approach to identify DNA-damage-induced chromatin-binding proteins in a systematic way. Two-dimensional gel analysis for protein extracts of chromatin from DNA-damage-induced and control HeLa cells identified four proteins as the candidates for DNA-damage-induced chromatin-binding proteins. MALDI–TOF (matrix-assisted laser-desorption ionization–time-of-flight) MS analysis identified these proteins to be NPM (nucleophosmin), hnRNP (heterogeneous nuclear ribonucleoprotein) C1, hnRNP C2 and 37-kDa laminin-receptor precursor, and the identity of these proteins was further confirmed by immunoblot analysis with specific antibodies. We then demonstrated with chromatin-binding assays that NPM and hnRNP C1/C2, the abundant nuclear proteins with pleiotropic functions, indeed bind to chromatin in a DNA-damage-dependent manner, implicating these proteins in DNA repair and/or damage response. Immunofluorescence experiments showed that NPM, normally present in the nucleoli, is mobilized into the nucleoplasm after DNA damage, and that neither NPM nor hnRNP C1/C2 is actively recruited to the sites of DNA breaks. These results suggest that NPM and hnRNP C1/C2 may function at the levels of the global context of chromatin, rather than by specifically targeting the broken DNA.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2005
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Biochemical Journal, Portland Press Ltd., Vol. 418, No. 2 ( 2009-03-01), p. 311-323
    Abstract: α-Synuclein is a pathological component of PD (Parkinson's disease) by participating in Lewy body formation. JC-1 (5,5′,6,6′-tetrachloro-1,1,3,3′-tetraethylbenzimidazolyl carbocyanine iodide) has been shown to interact with α-synuclein at the acidic C-terminal region with a Kd of 2.6 μM. JC-1 can discriminated between the fibrillation states of α-synuclein (monomeric, oligomeric intermediate and fibrillar forms) by emitting the enhanced binding fluorescence of different colours at 590, 560 and 538 nm respectively with the common excitation at 490 nm. The fibrillation-state-specific interaction of JC-1 allowed us to perform real-time analyses of the α-synuclein fibrillation in the presence of iron as a fibrillation inducer, rifampicin as a fibrillation inhibitor, baicalein as a defibrillation agent and dequalinium as a protofibril inducer. In addition, various α-synuclein fibrils with different morphologies prepared with specific ligands such as metal ions, glutathione, eosin and lipids were monitored with their characteristic JC-1-binding fluorescence spectra. FRET (fluorescence resonance energy transfer) between thioflavin-T and JC-1 was also employed to specifically identify the amyloid fibrils of α-synuclein. Taken together, we have introduced JC-1 as a powerful and versatile probe to explore the molecular mechanism of the fibrillation process of α-synuclein in vitro. It could be also useful in high-throughput drug screening. The specific α-synuclein interaction of JC-1 would therefore contribute to our complete understanding of the molecular aetiology of PD and eventual development of diagnostic/therapeutic strategies for various α-synucleinopathies.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2009
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Biochemical Journal, Portland Press Ltd., Vol. 345, No. 3 ( 2000-2-1), p. 511-
    Type of Medium: Online Resource
    ISSN: 0264-6021
    RVK:
    Language: Unknown
    Publisher: Portland Press Ltd.
    Publication Date: 2000
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Biochemical Journal, Portland Press Ltd., Vol. 345, No. 3 ( 2000-02-01), p. 511-519
    Abstract: Membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14) is known to activate pro-matrix metalloproteinase-2 (pro-MMP-2; progelatinase A) on the cell surface. To analyse the tissue inhibitor of metalloproteinases-2 (TIMP-2) effect on activation of pro-MMP-2 by MT1-MMP, we have expressed the full-size MT1-MMP (fMT1-MMP) and a transmembrane (TM)-domain-deleted soluble MT1-MMP (sMT1-MMP) in the baculovirus/Sf9 (Spodoptera frugiperda 9) insect-cell system, where neither endogenous gelatinolytic MMPs nor TIMP-2 are expressed. Both fMT1-MMP and sMT1-MMP expressed in the expression system were found not to contain the pro-domain and were able to activate the TIMP-2-free pro-MMP-2. Both in the insect cells and in vitro, activation of pro-MMP-2 by fMT1-MMP was enhanced at low concentrations of TIMP-2 and inhibited by its higher concentrations. The maximal enhancing effect was detected at 0.05 molar fraction of TIMP-2/fMT1-MMP. In contrast, activation of pro-MMP-2 by sMT1-MMP was dose-dependently inhibited by TIMP-2. These results demonstrate that the TM domain of MT1-MMP is not required for the ability to activate pro-MMP-2, but is required for the enhancing effect of TIMP-2 on pro-MMP-2 activation by recruiting pro-MMP-2 to the MT1-MMP-TIMP-2 complex as a cell-surface pro-MMP-2 receptor. Moreover, our data strongly suggest that the pro-domain of MT1-MMP is not required for the TIMP-2-mediated enhancing effect on pro-MMP-2 activation. In addition, the pro-MMP-2 in the MT1-MMP-TIMP-2-pro-MMP-2 ternary complex was not activated without external activator, but readily by addition of sMT1-MMP. This result demonstrates that MT1-MMP free of TIMP-2 would be the enzyme responsible for activation of the pro-MMP-2 in the ternary complex under physiological conditions.
    Type of Medium: Online Resource
    ISSN: 0264-6021 , 1470-8728
    RVK:
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2000
    detail.hit.zdb_id: 1473095-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...