GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus GmbH  (2)
  • Biodiversity Research  (2)
  • 1
    In: Biogeosciences, Copernicus GmbH, Vol. 17, No. 1 ( 2020-01-16), p. 145-161
    Abstract: Abstract. We evaluated how ranges of four endemic and non-endemic aquatic ostracode species changed in response to long-term (glacial–interglacial cycles) and abrupt climate fluctuations during the last 155 kyr in the northern Neotropical region. We employed two complementary approaches, fossil records and species distribution models (SDMs). Fossil assemblages were obtained from sediment cores PI-1, PI-2, PI-6 and Petén-Itzá 22-VIII-99 from the Petén Itzá Scientific Drilling Project, Lake Petén Itzá, Guatemala. To obtain a spatially resolved pattern of (past) species distribution, a downscaling cascade is employed. SDMs were reconstructed for the last interglacial (∼120 ka), the last glacial maximum (∼22 ka) and the middle Holocene (∼6 ka). During glacial and interglacial cycles and marine isotope stages (MISs), modelled paleo-distributions and paleo-records show the nearly continuous presence of endemic and non-endemic species in the region, suggesting negligible effects of long-term climate variations on aquatic niche stability. During periods of abrupt ecological disruption such as Heinrich Stadial 1 (HS1), endemic species were resilient, remaining within their current areas of distribution. Non-endemic species, however, proved to be more sensitive. Modelled paleo-distributions suggest that the geographic range of non-endemic species changed, moving southward into Central America. Due to the uncertainties involved in the downscaling from the global numerical to the highly resolved regional geospatial statistical modelling, results can be seen as a benchmark for future studies using similar approaches. Given relatively moderate temperature decreases in Lake Petén Itzá waters (∼5 ∘C) and the persistence of some aquatic ecosystems even during periods of severe drying in HS1, our data suggest (1) the existence of micro-refugia and/or (2) continuous interaction between central metapopulations and surrounding populations, enabling aquatic taxa to survive climate fluctuations in the northern Neotropical region.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biogeosciences, Copernicus GmbH, Vol. 19, No. 22 ( 2022-11-15), p. 5167-5185
    Abstract: Abstract. Geodiversity is recognized as one of the most important drivers of ecosystem characteristics and biodiversity globally. However, in the northern Neotropics, the contribution of highly diverse landscapes, environmental conditions, and geological history in structuring large-scale patterns of aquatic environments and aquatic species associations remains poorly understood. We evaluated the relationships among geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. A cluster analysis (CA), based on geological, geochemical, mineralogical, and water-column physical and chemical characteristics of 76 aquatic ecosystems (karst, volcanic, tectonic) revealed two main limnological regions: (1) karst plateaus of the Yucatán Peninsula and northern Guatemala, and (2) volcanic terrains of the Guatemalan highlands, mid-elevation sites in El Salvador and Honduras, and the Nicaraguan lowlands. In addition, seven subregions were recognized, demonstrating a high heterogeneity of aquatic environments. Principal component analysis (PCA) identified water chemistry (ionic composition) and mineralogy as most influential for aquatic ecosystem classification. Multi-parametric analyses, based on biological data, revealed that ostracode species associations represent disjunct faunas. Five species associations, distributed according to limnological regions, were recognized. Structural equation modeling (SEM) revealed that geodiversity explains limnological patterns of the study area. Limnology further explained species composition, but not species richness. The influence of conductivity and elevation were individually evaluated in SEM and were statistically significant for ostracode species composition, though not for species richness. We conclude that geodiversity has a central influence on the limnological conditions of aquatic systems, which in turn influence ostracode species composition in lakes of the northern Neotropical region.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...