GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cold Spring Harbor Laboratory  (2)
  • Biodiversity Research  (2)
  • Biology  (2)
Material
Publisher
  • Cold Spring Harbor Laboratory  (2)
Language
Years
FID
  • Biodiversity Research  (2)
Subjects(RVK)
  • Biology  (2)
RVK
  • 1
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2014
    In:  Genes & Development Vol. 28, No. 4 ( 2014-02-15), p. 409-421
    In: Genes & Development, Cold Spring Harbor Laboratory, Vol. 28, No. 4 ( 2014-02-15), p. 409-421
    Abstract: Genetic basis of phenotypic differences in individuals is an important area in biology and personalized medicine. Analysis of divergent Saccharomyces cerevisiae strains grown under different conditions revealed extensive variation in response to both drugs (e.g., 4-nitroquinoline 1-oxide [4NQO]) and different carbon sources. Differences in 4NQO resistance were due to amino acid variation in the transcription factor Yrr1. Yrr1 YJM789 conferred 4NQO resistance but caused slower growth on glycerol, and vice versa with Yrr1 S96 , indicating that alleles of Yrr1 confer distinct phenotypes. The binding targets of Yrr1 alleles from diverse yeast strains varied considerably among different strains grown under the same conditions as well as for the same strain under different conditions, indicating that distinct molecular programs are conferred by the different Yrr1 alleles. Our results demonstrate that genetic variations in one important control gene ( YRR1 ), lead to distinct regulatory programs and phenotypes in individuals. We term these polymorphic control genes “master variators.”
    Type of Medium: Online Resource
    ISSN: 0890-9369 , 1549-5477
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2014
    detail.hit.zdb_id: 1467414-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genes & Development, Cold Spring Harbor Laboratory, Vol. 34, No. 7-8 ( 2020-04-01), p. 580-597
    Abstract: Dysregulation of early neurodevelopment is implicated in macrocephaly/autism disorders. However, the mechanism underlying this dysregulation, particularly in human cells, remains poorly understood. Mutations in the small GTPase gene RAB39b are associated with X-linked macrocephaly, autism spectrum disorder (ASD), and intellectual disability. The in vivo roles of RAB39b in the brain remain unknown. We generated Rab39b knockout (KO) mice and found that they exhibited cortical neurogenesis impairment, macrocephaly, and hallmark ASD behaviors, which resembled patient phenotypes. We also produced mutant human cerebral organoids that were substantially enlarged due to the overproliferation and impaired differentiation of neural progenitor cells (NPCs), which resemble neurodevelopmental deficits in KO mice. Mechanistic studies reveal that RAB39b interacts with PI3K components and its deletion promotes PI3K–AKT–mTOR signaling in NPCs of mouse cortex and cerebral organoids. The mTOR activity is robustly enhanced in mutant outer radial glia cells (oRGs), a subtype of NPCs barely detectable in rodents but abundant in human brains. Inhibition of AKT signaling rescued enlarged organoid sizes and NPC overproliferation caused by RAB39b mutations. Therefore, RAB39b mutation promotes PI3K–AKT–mTOR activity and alters cortical neurogenesis, leading to macrocephaly and autistic-like behaviors. Our studies provide new insights into neurodevelopmental dysregulation and common pathways associated with ASD across species.
    Type of Medium: Online Resource
    ISSN: 0890-9369 , 1549-5477
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2020
    detail.hit.zdb_id: 1467414-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...