GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (12)
  • Biodiversity Research  (12)
Material
Publisher
  • American Society for Microbiology  (12)
Language
Years
FID
  • Biodiversity Research  (12)
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2021
    In:  Applied and Environmental Microbiology Vol. 87, No. 22 ( 2021-10-28)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 87, No. 22 ( 2021-10-28)
    Abstract: Recent omics studies have provided invaluable insights into the metabolic potential, adaptation, and evolution of novel archaeal lineages from a variety of extreme environments. We utilized a genome-resolved metagenomic approach to recover eight medium- to high-quality metagenome-assembled genomes (MAGs) that likely represent a new order (“ Candidatus Sysuiplasmatales”) in the class Thermoplasmata from mine tailings and acid mine drainage (AMD) sediments sampled from two copper mines in South China. 16S rRNA gene-based analyses revealed a narrow habitat range for these uncultured archaea limited to AMD and hot spring-related environments. Metabolic reconstruction indicated a facultatively anaerobic heterotrophic lifestyle. This may allow the archaea to adapt to oxygen fluctuations and is thus in marked contrast to the majority of lineages in the domain Archaea , which typically show obligately anaerobic metabolisms. Notably, “ Ca. Sysuiplasmatales” could conserve energy through degradation of fatty acids, amino acid metabolism, and oxidation of reduced inorganic sulfur compounds (RISCs), suggesting that they may contribute to acid generation in the extreme mine environments. Unlike the closely related orders Methanomassiliicoccales and “ Candidatus Gimiplasmatales,” “ Ca. Sysuiplasmatales” lacks the capacity to perform methanogenesis and carbon fixation. Ancestral state reconstruction indicated that “ Ca. Sysuiplasmatales,” the closely related orders Methanomassiliicoccales and “ Ca. Gimiplasmatales,” and the orders SG8-5 and RBG-16-68-12 originated from a facultatively anaerobic ancestor capable of carbon fixation via the bacterial-type H 4 F Wood-Ljungdahl pathway (WLP). Their metabolic divergence might be attributed to different evolutionary paths. IMPORTANCE A wide array of archaea populate Earth’s extreme environments; therefore, they may play important roles in mediating biogeochemical processes such as iron and sulfur cycling. However, our knowledge of archaeal biology and evolution is still limited, since the majority of the archaeal diversity is uncultured. For instance, most order-level lineages except Thermoplasmatales , Aciduliprofundales , and Methanomassiliicoccales within Thermoplasmata do not have cultured representatives. Here, we report the discovery and genomic characterization of a novel order, “ Ca . Sysuiplasmatales,” within Thermoplasmata in extremely acidic mine environments. “ Ca . Sysuiplasmatales” are inferred to be facultatively anaerobic heterotrophs and likely contribute to acid generation through the oxidation of RISCs. The physiological divergence between “ Ca . Sysuiplasmatales” and closely related Thermoplasmata lineages may be attributed to different evolutionary paths. These results expand our knowledge of archaea in the extreme mine ecosystem.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied and Environmental Microbiology, American Society for Microbiology
    Abstract: Discovering new classes of antibiotics is desperately needed to combat the emergence of multidrug-resistant pathogens. To facilitate the drug discovery process, a simple cell-based assay for mechanistic studies is essential to characterize antimicrobial candidates. In this work, we developed a luciferase-based reporter system to quantify the transcriptional and translational effects of potential compounds and validated our system using two currently marketed drugs. Reporter strains generated in this study provide readily available means for identifying bacterial transcription inhibitors as prospective novel antibacterials. We also provided a series of plasmids for characterizing promoters under various conditions such as stress.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2024
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 87, No. 22 ( 2021-10-28)
    Abstract: We examined the impacts of warming, nitrogen (N) addition, and suppression of arbuscular mycorrhizal fungi (AMF) on soil bacterial and fungal richness and community composition in a field experiment. AMF root colonization and the concentration of an AMF-specific phospholipid fatty acid (PLFA) were significantly reduced after the application of the fungicide benomyl as a soil drench. Warming and N addition had no independent effects but interactively decreased soil fungal richness, while warming, N addition, and AMF suppression together reduced soil bacterial richness. Soil bacterial and fungal species diversity was lower with AMF suppression, indicating that AMF suppression has a negative effect on microbial diversity. Warming and N addition decreased the net loss of plant species and the plant species richness, respectively. AMF suppression reduced plant species richness and the net gain of plant species but enhanced the net loss of plant species. Structural equation modeling (SEM) demonstrated that the soil bacterial community responded to the increased soil temperature (ST) induced by warming and the increased soil available N (AN) induced by N addition through changes in AMF colonization and plant species richness; ST directly affected the bacterial community, but AN affected both the soil bacterial and fungal communities via AMF colonization. In addition, higher mycorrhizal colonization increased the plant species richness by increasing the net gains in plant species under warming and N addition. IMPORTANCE AMF can influence the composition and diversity of plant communities. Previous studies have shown that climate warming and N deposition reduce the effectiveness of AMF. However, how AMF affect soil bacterial and fungal communities under these global change drivers is still poorly understood. A 4-year field study revealed that AMF suppression decreased bacterial and fungal diversity irrespective of warming or N addition, while AMF suppression interacted with warming or N addition to reduce bacterial and fungal richness. In addition, bacterial and fungal community compositions were determined by mycorrhizal colonization, which was regulated by soil AN and ST. These results suggest that AMF suppression can aggravate the severe losses to native soil microbial diversity and functioning caused by global changes; thus, AMF play a vital role in maintaining belowground ecosystem stability in the future.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 88, No. 14 ( 2022-07-26)
    Abstract: Rhodanobacter has been found as the dominant genus in aquifers contaminated with high concentrations of nitrate and uranium in Oak Ridge, TN, USA. The in situ stimulation of denitrification has been proposed as a potential method to remediate nitrate and uranium contamination. Among the Rhodanobacter species, Rhodanobacter denitrificans strains have been reported to be capable of denitrification and contain abundant metal resistance genes. However, due to the lack of a mutagenesis system in these strains, our understanding of the mechanisms underlying low-pH resistance and the ability to dominate in the contaminated environment remains limited. Here, we developed an in-frame markerless deletion system in two R. denitrificans strains. First, we optimized the growth conditions, tested antibiotic resistance, and determined appropriate transformation parameters in 10 Rhodanobacter strains. We then deleted the upp gene, which encodes uracil phosphoribosyltransferase, in R. denitrificans strains FW104-R3 and FW104-R5. The resulting strains were designated R3_Δ upp and R5_Δ upp and used as host strains for mutagenesis with 5-fluorouracil (5-FU) resistance as the counterselection marker to generate markerless deletion mutants. To test the developed protocol, the narG gene encoding nitrate reductase was knocked out in the R3_Δ upp and R5_Δ upp host strains. As expected, the narG mutants could not grow in anoxic medium with nitrate as the electron acceptor. Overall, these results show that the in-frame markerless deletion system is effective in two R. denitrificans strains, which will allow for future functional genomic studies in these strains furthering our understanding of the metabolic and resistance mechanisms present in Rhodanobacter species. IMPORTANCE Rhodanobacter denitrificans is capable of denitrification and is also resistant to toxic heavy metals and low pH. Accordingly, the presence of Rhodanobacter species at a particular environmental site is considered an indicator of nitrate and uranium contamination. These characteristics suggest its future potential application in bioremediation of nitrate or concurrent nitrate and uranium contamination in groundwater ecosystems. Due to the lack of genetic tools in this organism, the mechanisms of low-pH and heavy metal resistance in R. denitrificans strains remain elusive, which impedes its use in bioremediation strategies. Here, we developed a genome editing method in two R. denitrificans strains. This work marks a crucial step in developing Rhodanobacter as a model for studying the diverse mechanisms of low-pH and heavy metal resistance associated with denitrification.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 2015
    In:  Eukaryotic Cell Vol. 14, No. 11 ( 2015-11), p. 1127-1134
    In: Eukaryotic Cell, American Society for Microbiology, Vol. 14, No. 11 ( 2015-11), p. 1127-1134
    Abstract: As a successful commensal and pathogen of humans, Candida albicans encounters a wide range of environmental conditions. Among them, ambient pH, which changes frequently and affects many biological processes in this species, is an important factor, and the ability to adapt to pH changes is tightly linked with pathogenesis and morphogenesis. In this study, we report that pH has a profound effect on white-opaque switching and sexual mating in C. albicans . Acidic pH promotes white-to-opaque switching under certain culture conditions but represses sexual mating. The Rim101-mediated pH-sensing pathway is involved in the control of pH-regulated white-opaque switching and the mating response. Phr2 and Rim101 could play a major role in acidic pH-induced opaque cell formation. Despite the fact that the cyclic AMP (cAMP) signaling pathway does not play a major role in pH-regulated white-opaque switching and mating, white and opaque cells of the cyr1/cyr1 mutant, which is defective in the production of cAMP, showed distinct growth defects under acidic and alkaline conditions. We further discovered that acidic pH conditions repressed sexual mating due to the failure of activation of the Ste2-mediated α-pheromone response pathway in opaque a cells. The effects of pH changes on phenotypic switching and sexual mating could involve a balance of host adaptation and sexual reproduction in C. albicans .
    Type of Medium: Online Resource
    ISSN: 1535-9778 , 1535-9786
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2015
    detail.hit.zdb_id: 2071564-X
    detail.hit.zdb_id: 2077635-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2014
    In:  Applied and Environmental Microbiology Vol. 80, No. 22 ( 2014-11-15), p. 6870-6878
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 80, No. 22 ( 2014-11-15), p. 6870-6878
    Abstract: EstS1, a newly identified thermostable esterase from Sulfobacillus acidophilus DSM10332, was heterologously expressed in Escherichia coli and shown to enzymatically degrade phthalate esters (PAEs) to their corresponding monoalkyl PAEs. The optimal pH and temperature of the esterase were found to be 8.0 and 70°C, respectively. The half-life of EstS1 at 60°C was 15 h, indicating that the enzyme had good thermostability. The specificity constant ( k cat / K m ) of the enzyme for p -nitrophenyl butyrate was as high as 6,770 mM −1 s −1 . The potential value of EstS1 was demonstrated by its ability to effectively hydrolyze 35 to 82% of PAEs (10 mM) within 2 min at 37°C, with all substrates being completely degraded within 24 h. At 60°C, the time required for complete hydrolysis of most PAEs was reduced by half. To our knowledge, this enzyme is a new esterase identified from thermophiles that is able to degrade various PAEs at high temperatures.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society for Microbiology ; 2015
    In:  Applied and Environmental Microbiology Vol. 81, No. 13 ( 2015-07), p. 4423-4431
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 81, No. 13 ( 2015-07), p. 4423-4431
    Abstract: The CRISPR-Cas9 system is a powerful and revolutionary genome-editing tool for eukaryotic genomes, but its use in bacterial genomes is very limited. Here, we investigated the use of the Streptococcus pyogenes CRISPR-Cas9 system in editing the genome of Clostridium cellulolyticum , a model microorganism for bioenergy research. Wild-type Cas9-induced double-strand breaks were lethal to C. cellulolyticum due to the minimal expression of nonhomologous end joining (NHEJ) components in this strain. To circumvent this lethality, Cas9 nickase was applied to develop a single-nick-triggered homologous recombination strategy, which allows precise one-step editing at intended genomic loci by transforming a single vector. This strategy has a high editing efficiency ( 〉 95%) even using short homologous arms (0.2 kb), is able to deliver foreign genes into the genome in a single step without a marker, enables precise editing even at two very similar target sites differing by two bases preceding the seed region, and has a very high target site density (median interval distance of 9 bp and 95.7% gene coverage in C. cellulolyticum ). Together, these results establish a simple and robust methodology for genome editing in NHEJ-ineffective prokaryotes.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2015
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 83, No. 10 ( 2017-05-15)
    Abstract: Biohydrogen production from the pulp and paper effluent containing rich lignocellulosic material could be achieved by the fermentation process. Xylose, an important hemicellulose hydrolysis product, is used less efficiently as a substrate for biohydrogen production. Moreover, azo dyes are usually added to fabricate anticounterfeiting paper, which further increases the complexity of wastewater. This study reports that xylose could serve as the sole carbon source for a pure culture of Klebsiella oxytoca GS-4-08 to achieve simultaneous decolorization and biohydrogen production. With 2 g liter −1 of xylose as the substrate, a maximum xylose utilization rate (UR xyl ) and a hydrogen molar yield (HMY) of 93.99% and 0.259 mol of H 2 mol of xylose −1 , respectively, were obtained. Biohydrogen kinetics and electron equivalent ( e − equiv) balance calculations indicated that methyl red (MR) penetrates and intracellularly inhibits both the pentose phosphate pathway and pyruvate fermentation pathway, while methyl orange (MO) acted independently of the glycolysis and biohydrogen pathway. The data demonstrate that biohydrogen pathways in the presence of azo dyes with sulfonate and carboxyl groups were different, but the azo dyes could be completely reduced during the biohydrogen production period in the presence of MO or MR. The feasibility of hydrogen production from industrial pulp and paper effluent by the strain if the xylose is sufficient was also proved and was not affected by toxic substances which usually exist in such wastewater, except for chlorophenol. This study offers a promising energy-recycling strategy for treating pulp and paper wastewaters, especially for those containing azo dyes. IMPORTANCE The pulp and paper industry is a major industry in many developing countries, and the global market of pulp and paper wastewater treatment is expected to increase by 60% between 2012 and 2020. Such wastewater contains large amounts of refractory contaminants, such as lignin, whose reclamation is considered economically crucial and environmentally friendly. Furthermore, azo dyes are usually added in order to fabricate anticounterfeiting paper, which further increases the complexity of the pulp and paper wastewater. This work may offer a better understanding of biohydrogen production from xylose in the presence of azo dyes and provide a promising energy-recycling method for treating pulp and paper wastewater, especially for those containing azo dyes.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 85, No. 5 ( 2019-03)
    Abstract: Cellulases from glycoside hydrolase family 5 (GH5) are key endoglucanase enzymes in the degradation of diverse polysaccharide substrates and are used in industrial enzyme cocktails to break down biomass. The GH5 family shares a canonical (βα) 8 -barrel structure, where each (βα) module is essential for the enzyme’s stability and activity. Despite their shared topology, the thermostability of GH5 endoglucanase enzymes can vary significantly, and highly thermostable variants are often sought for industrial applications. Based on the previously characterized thermophilic GH5 endoglucanase Egl5A from Talaromyces emersonii ( Te Egl5A), which has an optimal temperature of 90°C, we created 10 hybrid enzymes with elements of the mesophilic endoglucanase Cel5 from Stegonsporium opalus ( So Cel5) to determine which elements are responsible for enhanced thermostability. Five of the expressed hybrid enzymes exhibit enzyme activity. Two of these hybrids exhibited pronounced increases in the temperature optimum (10 and 20°C), the temperature at which the protein lost 50% of its activity ( T 50 ) (15 and 19°C), and the melting temperature ( T m ) (16.5 and 22.9°C) and extended half-lives ( t 1/2 ) (∼240- and 650-fold at 55°C) relative to the values for the mesophilic parent enzyme and demonstrated improved catalytic efficiency on selected substrates. The successful hybridization strategies were validated experimentally in another GH5 endoglucanase, Cel5 from Aspergillus niger ( An Cel5), which demonstrated a similar increase in thermostability. Based on molecular dynamics (MD) simulations of both the So Cel5 and Te Egl5A parent enzymes and their hybrids, we hypothesize that improved hydrophobic packing of the interface between α 2 and α 3 is the primary mechanism by which the hybrid enzymes increase their thermostability relative to that of the mesophilic parent So Cel5. IMPORTANCE Thermal stability is an essential property of enzymes in many industrial biotechnological applications, as high temperatures improve bioreactor throughput. Many protein engineering approaches, such as rational design and directed evolution, have been employed to improve the thermal properties of mesophilic enzymes. Structure-based recombination has also been used to fuse TIM barrel fragments, and even fragments from unrelated folds, to generate new structures. However, little research has been done on GH5 endoglucanases. In this study, two GH5 endoglucanases exhibiting TIM barrel structure, So Cel5 and Te Egl5A, with different thermal properties, were hybridized to study the roles of different (βα) motifs. This work illustrates the role that structure-guided recombination can play in helping to identify sequence function relationships within GH5 enzymes by supplementing natural diversity with synthetic diversity.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Society for Microbiology ; 2022
    In:  Applied and Environmental Microbiology Vol. 88, No. 11 ( 2022-06-14)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 88, No. 11 ( 2022-06-14)
    Abstract: The good thermostability of enzymes is an important basis for their wide application in industry. In this study, the phytase APPA from Yersinia intermedia was designed by evolution-guided design. Through the collection of homologous sequences in the NCBI database, we obtained a sequence set composed of 5,569 sequences, counted the number and locations of motif N-X-T/S, and selected the sites with high frequency in evolution as candidate sites for experiments. Based on the principle that N -glycosylation modification sites are located on the protein surface, 13 mutants were designed to optimize the number and location of N -glycosylation sites. Through experimental verification, 7 single mutants with improved thermostability were obtained. The best mutant, M14, with equal catalytic efficiency as the wild-type was obtained through combined mutation. The half-life ( t 1/2 ) value of mutant M14 was improved from 3.32 min at 65°C to 25 min of at 100°C, allowing it to withstand boiling water treatment, retaining approximately 75% initial activity after a 10-min incubation at 100°C. Differential scanning calorimetry analysis revealed that while the mutants’ thermodynamic stability was nearly unchanged, their kinetic stability was greatly improved, and the combined mutant exhibited strong refolding ability. The results of a in vitro digestibility test indicated that the application effect of mutant M14 was about 4.5 times that of wild-type APPA, laying a foundation for its industrial application. IMPORTANCE Due to the harsh reaction conditions of industrial production, the relative instability of enzymes limits their application in industrial production, such as for food, pharmaceuticals, and feed. For example, the pelleting process of feed includes a brief high temperature (80 to 85°C), which requires the enzyme to have excellent thermostability. Therefore, a simple and effective method to improve the thermostability of enzymes has important practical value. In this study, we make full use of the existing homologous sequences (5,569) in the database to statistically analyze the existence frequency of N-X-T/S motifs in this large sequence space to design the phytase APPA with improved thermostability and a high hit rate (~50%). We obtained the best combination mutant, M14, that can tolerate boiling water treatment and greatly improved its kinetic stability without damaging its specific activity. Simultaneously, we proved that its performance improvement is due to its enhanced refolding ability, which comes from N -glycan modification rather than amino acid replacement. Our results provide a feasible and effective method for the modification of enzyme thermostability.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...