GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (1)
  • Biodiversity Research  (1)
Material
Publisher
  • American Society for Microbiology  (1)
Language
Years
FID
  • Biodiversity Research  (1)
Subjects(RVK)
  • 1
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 83, No. 4 ( 2017-02-15)
    Abstract: Manipulation of biofilm formation in Shewanella is beneficial for application to industrial and environmental biotechnology. BpfA is an adhesin largely responsible for biofilm formation in many Shewanella species. However, the mechanism underlying BpfA production and the resulting biofilm remains vaguely understood. We previously described the finding that BpfA expression is enhanced by DosD, an oxygen-stimulated diguanylate cyclase, under aerobic growth. In the present work, we identify FlrA as a critical transcription regulator of the bpfA operon in Shewanella putrefaciens CN32 by transposon mutagenesis. FlrA acted as a repressor of the operon promoter by binding to two boxes overlapping the −10 and −35 sites recognized by σ 70 . DosD regulation of the expression of the bpfA operon was mediated by FlrA, and cyclic diguanylic acid (c-di-GMP) abolished FlrA binding to the operon promoter. We also demonstrate that FlhG, an accessory protein for flagellum synthesis, antagonized FlrA repression of the expression of the bpfA operon. Collectively, this work demonstrates that FlrA acts as a central mediator in the signaling pathway from c-di-GMP to BpfA-associated biofilm formation in S. putrefaciens CN32. IMPORTANCE Motility and biofilm are mutually exclusive lifestyles, shifts between which are under the strict regulation of bacteria attempting to adapt to the fluctuation of diverse environmental conditions. The FlrA protein in many bacteria is known to control motility as a master regulator of flagellum synthesis. This work elucidates its effect on biofilm formation by controlling the expression of the adhesin BpfA in S. putrefaciens CN32 in response to c-di-GMP. Therefore, FlrA plays a dual role in controlling motility and biofilm formation in S. putrefaciens CN32. The cooccurrence of flrA , bpfA , and the FlrA box in the promoter region of the bpfA operon in diverse Shewanella strains suggests that bpfA is a common mechanism that controls biofilm formation in this bacterial species.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...