GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (5)
  • Biodiversity Research  (5)
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 1999
    In:  Applied and Environmental Microbiology Vol. 65, No. 2 ( 1999-02), p. 802-806
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 65, No. 2 ( 1999-02), p. 802-806
    Abstract: Propachlor (2-chloro- N -isopropylacetanilide) is an acetamide herbicide used in preemergence. In this study, we isolated and characterized a soil bacterium, Acinetobacter strain BEM2, that was able to utilize this herbicide as the sole and limiting carbon source. Identification of the intermediates of propachlor degradation by this strain and characterization of new metabolites in the degradation of propachlor by a previously reported strain of Pseudomonas (PEM1) support two different propachlor degradation pathways. Washed-cell suspensions of strain PEM1 with propachlor accumulated N -isopropylacetanilide, acetanilide, acetamide, and catechol. Pseudomonas strain PEM1 grew on propachlor with a generation time of 3.4 h and a K s of 0.17 ± 0.04 mM. Acinetobacter strain BEM2 grew on propachlor with a generation time of 3.1 h and a K s of 0.3 ± 0.07 mM. Incubations with strain BEM2 resulted in accumulation of N -isopropylacetanilide, N -isopropylaniline, isopropylamine, and catechol. Both degradative pathways were inducible, and the principal product of the carbon atoms in the propachlor ring was carbon dioxide. These results and biodegradation experiments with the identified metabolites indicate that metabolism of propachlor by Pseudomonas sp. strain PEM1 proceeds through a different pathway from metabolism by Acinetobacter sp. strain BEM2.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1999
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2013
    In:  Applied and Environmental Microbiology Vol. 79, No. 18 ( 2013-09-15), p. 5509-5518
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 79, No. 18 ( 2013-09-15), p. 5509-5518
    Abstract: Lactobacillus casei is the only lactic acid bacterium in which two pathways for l -malate degradation have been described: the malolactic enzyme (MLE) and the malic enzyme (ME) pathways. Whereas the ME pathway enables L. casei to grow on l -malate, MLE does not support growth. The mle gene cluster consists of three genes encoding MLE ( mleS ), the putative l -malate transporter MleT, and the putative regulator MleR. The mae gene cluster consists of four genes encoding ME ( maeE ), the putative transporter MaeP, and the two-component system MaeKR. Since both pathways compete for the same substrate, we sought to determine whether they are coordinately regulated and their role in l -malate utilization as a carbon source. Transcriptional analyses revealed that the mle and mae genes are independently regulated and showed that MleR acts as an activator and requires internalization of l -malate to induce the expression of mle genes. Notwithstanding, both l -malate transporters were required for maximal l -malate uptake, although only an mleT mutation caused a growth defect on l -malate, indicating its crucial role in l -malate metabolism. However, inactivation of MLE resulted in higher growth rates and higher final optical densities on l -malate. The limited growth on l -malate of the wild-type strain was correlated to a rapid degradation of the available l -malate to l -lactate, which cannot be further metabolized. Taken together, our results indicate that L. casei l -malate metabolism is not optimized for utilization of l -malate as a carbon source but for deacidification of the medium by conversion of l -malate into l -lactate via MLE.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 85, No. 2 ( 2019-01-15)
    Abstract: Amination of bulky ketones, particularly in ( R ) configuration, is an attractive chemical conversion; however, known ω-transaminases (ω-TAs) show insufficient levels of performance. By applying two screening methods, we discovered 10 amine transaminases from the class III ω-TA family that were 38% to 76% identical to homologues. We present examples of such enzymes preferring bulky ketones over keto acids and aldehydes with stringent ( S ) selectivity. We also report representatives from the class III ω-TAs capable of converting ( R ) and ( S ) amines and bulky ketones and one that can convert amines with longer alkyl substituents. The preference for bulky ketones was associated with the presence of a hairpin region proximal to the conserved Arg414 and residues conforming and close to it. The outward orientation of Arg414 additionally favored the conversion of ( R ) amines. This configuration was also found to favor the utilization of putrescine as an amine donor, so that class III ω-TAs with Arg414 in outward orientation may participate in vivo in the catabolism of putrescine. The positioning of the conserved Ser231 also contributes to the preference for amines with longer alkyl substituents. Optimal temperatures for activity ranged from 45 to 65°C, and a few enzymes retained ≥50% of their activity in water-soluble solvents (up to 50% [vol/vol]). Hence, our results will pave the way to design, in the future, new class III ω-TAs converting bulky ketones and ( R ) amines for the production of high-value products and to screen for those converting putrescine. IMPORTANCE Amine transaminases of the class III ω-TAs are key enzymes for modification of chemical building blocks, but finding those capable of converting bulky ketones and ( R ) amines is still challenging. Here, by an extensive analysis of the substrate spectra of 10 class III ω-TAs, we identified a number of residues playing a role in determining the access and positioning of bulky ketones, bulky amines, and ( R )- and ( S ) amines, as well as of environmentally relevant polyamines, particularly putrescine. The results presented can significantly expand future opportunities for designing ( R )-specific class III ω-TAs to convert valuable bulky ketones and amines, as well as for deepening the knowledge into the polyamine catabolic pathways.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Eukaryotic Cell, American Society for Microbiology, Vol. 6, No. 3 ( 2007-03), p. 514-520
    Abstract: Aspergillus nidulans catabolizes phenylacetate (PhAc) and 3-hydroxy-, 4-hydroxy-, and 3,4-dihydroxyphenylacetate (3-OH-PhAc, 4-OH-PhAc, and 3,4-diOH-PhAc, respectively) through the 2,5-dihydroxyphenylacetate (homogentisic acid) catabolic pathway. Using cDNA subtraction techniques, we isolated a gene, denoted phacB , which is strongly induced by PhAc (and its hydroxyderivatives) and encodes a new cytochrome P450 (CYP450). A disrupted phacB strain ( ΔphacB ) does not grow on 3-hydroxy-, 4-hydroxy-, or 3,4-dihydroxy-PhAc. High-performance liquid chromatography and gas chromatography-mass spectrum analyses of in vitro reactions using microsomes from wild-type and several A. nidulans mutant strains confirmed that the phacB -encoded CYP450 catalyzes 3-hydroxyphenylacetate and 3,4-dihydroxyphenylacetate 6-hydroxylations to generate 2,5-dihydroxyphenylacetate and 2,4,5-trihydroxyphenylacetate, respectively. Both of these compounds are used as substrates by homogentisate dioxygenase. This cytochrome P450 protein also uses PhAc as a substrate to generate 2-OH-PhAc with a very low efficiency. The phacB gene is the first member of a new CYP450 subfamily (CYP504B).
    Type of Medium: Online Resource
    ISSN: 1535-9778 , 1535-9786
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2007
    detail.hit.zdb_id: 2071564-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 89, No. 2 ( 2023-02-28)
    Abstract: Hydrothermal vents are geographically widespread and host microorganisms with robust enzymes useful in various industrial applications. We examined microbial communities and carboxylesterases of two terrestrial hydrothermal vents of the volcanic island of Ischia (Italy) predominantly composed of Firmicutes , Proteobacteria , and Bacteroidota . High-temperature enrichment cultures with the polyester plastics polyhydroxybutyrate and polylactic acid (PLA) resulted in an increase of Thermus and Geobacillus species and to some extent Fontimonas and Schleiferia species. The screening at 37 to 70°C of metagenomic fosmid libraries from above enrichment cultures identified three hydrolases (IS10, IS11, and IS12), all derived from yet-uncultured Chloroflexota and showing low sequence identity (33 to 56%) to characterized enzymes. Enzymes expressed in Escherichia coli exhibited maximal esterase activity at 70 to 90°C, with IS11 showing the highest thermostability (90% activity after 20-min incubation at 80°C). IS10 and IS12 were highly substrate promiscuous and hydrolyzed all 51 monoester substrates tested. Enzymes were active with PLA, polyethylene terephthalate model substrate, and mycotoxin T-2 (IS12). IS10 and IS12 had a classical α/β-hydrolase core domain with a serine hydrolase catalytic triad (Ser155, His280, and Asp250) in their hydrophobic active sites. The crystal structure of IS11 resolved at 2.92 Å revealed the presence of a N-terminal β-lactamase-like domain and C-terminal lipocalin domain. The catalytic cleft of IS11 included catalytic Ser68, Lys71, Tyr160, and Asn162, whereas the lipocalin domain enclosed the catalytic cleft like a lid and contributed to substrate binding. Our study identified novel thermotolerant carboxylesterases with a broad substrate range, including polyesters and mycotoxins, for potential applications in biotechnology. IMPORTANCE High-temperature-active microbial enzymes are important biocatalysts for many industrial applications, including recycling of synthetic and biobased polyesters increasingly used in textiles, fibers, coatings and adhesives. Here, we identified three novel thermotolerant carboxylesterases (IS10, IS11, and IS12) from high-temperature enrichment cultures from Ischia hydrothermal vents and incubated with biobased polymers. The identified metagenomic enzymes originated from uncultured Chloroflexota and showed low sequence similarity to known carboxylesterases. Active sites of IS10 and IS12 had the largest effective volumes among the characterized prokaryotic carboxylesterases and exhibited high substrate promiscuity, including hydrolysis of polyesters and mycotoxin T-2 (IS12). Though less promiscuous than IS10 and IS12, IS11 had a higher thermostability with a high temperature optimum (80 to 90°C) for activity and hydrolyzed polyesters, and its crystal structure revealed an unusual lipocalin domain likely involved in substrate binding. The polyesterase activity of these enzymes makes them attractive candidates for further optimization and potential application in plastics recycling.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...