GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Microbes and Environments, Japanese Society of Microbial Ecology, Vol. 22, No. 3 ( 2007), p. 207-213
    Type of Medium: Online Resource
    ISSN: 1342-6311 , 1347-4405
    Language: English
    Publisher: Japanese Society of Microbial Ecology
    Publication Date: 2007
    detail.hit.zdb_id: 2039087-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2005
    In:  Applied and Environmental Microbiology Vol. 71, No. 7 ( 2005-07), p. 3528-3535
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 71, No. 7 ( 2005-07), p. 3528-3535
    Abstract: Diatoms are a major phytoplankton group that play important roles in maintaining oxygen levels in the atmosphere and sustaining the primary nutritional production of the aquatic environment. Among diatoms, the genus Chaetoceros is one of the most abundant and widespread. Temperature, climate, salinity, nutrients, and predators were regarded as important factors controlling the abundance and population dynamics of diatoms. Here we show that a viral infection can occur in the genus Chaetoceros and should therefore be considered as a potential mortality source. Chaetoceros salsugineum nuclear inclusion virus (CsNIV) is a 38-nm icosahedral virus that replicates within the nucleus of C. salsugineum. The latent period was estimated to be between 12 and 24 h, with a burst size of 325 infectious units per host cell. CsNIV has a genome structure unlike that of other viruses that have been described. It consists of a single molecule of covalently closed circular single-stranded DNA (ssDNA; 6,005 nucleotides), as well as a segment of linear ssDNA (997 nucleotides). The linear segment is complementary to a portion of the closed circle creating a partially double-stranded genome. Sequence analysis reveals a low but significant similarity to the replicase of circoviruses that have a covalently closed circular ssDNA genome. This new host-virus system will be useful for investigating the ecological relationships between bloom-forming diatoms and other viruses in the marine system. Our study supports the view that, given the diversity and abundance of plankton, the ocean is a treasury of undiscovered viruses.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2005
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    The Plankton Society of Japan/The Japanese Association of Benthology ; 2009
    In:  Plankton and Benthos Research Vol. 4, No. 4 ( 2009), p. 129-134
    In: Plankton and Benthos Research, The Plankton Society of Japan/The Japanese Association of Benthology, Vol. 4, No. 4 ( 2009), p. 129-134
    Type of Medium: Online Resource
    ISSN: 1880-8247 , 1882-627X
    Language: English
    Publisher: The Plankton Society of Japan/The Japanese Association of Benthology
    Publication Date: 2009
    detail.hit.zdb_id: 2657634-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 2006
    In:  Applied and Environmental Microbiology Vol. 72, No. 2 ( 2006-02), p. 1239-1247
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 72, No. 2 ( 2006-02), p. 1239-1247
    Abstract: We isolated a cyanophage (Ma-LMM01) that specifically infects a toxic strain of the bloom-forming cyanobacterium Microcystis aeruginosa . Transmission electron microscopy showed that the virion is composed of anisometric head and a tail complex consisting of a central tube and a contractile sheath with helical symmetry. The morphological features and the host specificity suggest that Ma-LMM01 is a member of the cyanomyovirus group. Using semi-one-step growth experiments, the latent period and burst size were estimated to be 6 to 12 h and 50 to 120 infectious units per cell, respectively. The size of the phage genome was estimated to be ca. 160 kbp using pulse-field gel electrophoresis; the nucleic acid was sensitive to DNase I, Bal31, and all 14 restriction enzymes tested, suggesting that it is a linear double-stranded DNA having a low level of methylation. Phylogenetic analyses based on the deduced amino acid sequences of two open reading frames coding for ribonucleotide reductase alpha- and beta-subunits showed that Ma-LMM01 forms a sister group with marine and freshwater cyanobacteria and is apparently distinct from T4-like phages. Phylogenetic analysis of the deduced amino acid sequence of the putative sheath protein showed that Ma-LMM01 does not form a monophyletic group with either the T4-like phages or prophages, suggesting that Ma-LMM01 is distinct from other T4-like phages that have been described despite morphological similarity. The host-phage system which we studied is expected to contribute to our understanding of the ecology of Microcystis blooms and the genetics of cyanophages, and our results suggest the phages could be used to control toxic cyanobacterial blooms.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2006
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 2005
    In:  Applied and Environmental Microbiology Vol. 71, No. 12 ( 2005-12), p. 8888-8894
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 71, No. 12 ( 2005-12), p. 8888-8894
    Abstract: Heterocapsa circularisquama RNA virus (HcRNAV) has at least two ecotypes (types UA and CY) that have intraspecies host specificities which are complementary to each other. We determined the complete genomic RNA sequence of two typical HcRNAV strains, HcRNAV34 and HcRNAV109, one of each ecotype. The nucleotide sequences of the viruses were 97.0% similar, and each had two open reading frames (ORFs), ORF-1 coding for a putative polyprotein having protease and RNA-dependent RNA polymerase (RdRp) domains and ORF-2 encoding a single major capsid protein. Phylogenetic analysis of the RdRp amino acid sequence suggested that HcRNAV belongs to a new previously unrecognized virus group. Four regions in ORF-2 had amino acid substitutions when HcRNAV34 was compared to HcRNAV109. We used a reverse transcription-nested PCR system to amplify the corresponding regions and also examined RNAs purified from six other HcRNAV strains with known host ranges. We also looked at natural marine sediment samples. Phylogenetic dendrograms for the amplicons correlated with the intraspecies host specificities of the test virus strains. The cloned sequences found in sediment also exhibited considerable similarities to either the UA-type or CY-type sequence. The tertiary structure of the capsid proteins predicted using computer modeling indicated that many of the amino acid substitutions were located in regions on the outside of the viral capsid proteins. This strongly suggests that the intraspecies host specificity of HcRNAV is determined by nanostructures on the virus surface that may affect binding to suitable host cells. Our study shows that capsid alterations can change the phytoplankton-virus (host-parasite) interactions in marine systems.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2005
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2011
    In:  Applied and Environmental Microbiology Vol. 77, No. 15 ( 2011-08), p. 5285-5293
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 77, No. 15 ( 2011-08), p. 5285-5293
    Abstract: Diatoms are one of the most significant primary producers in the ocean, and the importance of viruses as a potential source of mortality for diatoms has recently been recognized. Thus far, eight different diatom viruses infecting the genera Rhizosolenia and Chaetoceros have been isolated and characterized to different extents. We report the isolation of a novel diatom virus (ClorDNAV), which causes the lysis of the bloom-forming species Chaetoceros lorenzianus , and show its physiological, morphological, and genomic characteristics. The free virion was estimated to be ∼34 nm in diameter. The arrangement of virus particles appearing in cross-section was basically a random aggregation in the nucleus. Occasionally, distinctive formations such as a ring-like array composed of 9 or 10 spherical virions or a centipede-like array composed of rod-shaped particles were also observed. The latent period and the burst size were estimated to be 〈 48 h and 2.2 × 10 4 infectious units per host cell, respectively. ClorDNAV harbors a covalently closed circular single-stranded DNA (ssDNA) genome (5,813 nucleotides [nt]) that includes a partially double-stranded DNA region (979 nt). At least three major open reading frames were identified; one showed a high similarity to putative replicase-related proteins of the other ssDNA diatom viruses, Chaetoceros salsugineum DNA virus (previously reported as CsNIV) and Chaetoceros tenuissimus DNA virus. ClorDNAV is the third member of the closed circular ssDNA diatom virus group, the genus Bacilladnavirus .
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2011
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    The Plankton Society of Japan/The Japanese Association of Benthology ; 2009
    In:  Plankton and Benthos Research Vol. 4, No. 3 ( 2009), p. 122-124
    In: Plankton and Benthos Research, The Plankton Society of Japan/The Japanese Association of Benthology, Vol. 4, No. 3 ( 2009), p. 122-124
    Type of Medium: Online Resource
    ISSN: 1880-8247 , 1882-627X
    Language: English
    Publisher: The Plankton Society of Japan/The Japanese Association of Benthology
    Publication Date: 2009
    detail.hit.zdb_id: 2657634-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society for Microbiology ; 2008
    In:  Applied and Environmental Microbiology Vol. 74, No. 13 ( 2008-07), p. 4022-4027
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 74, No. 13 ( 2008-07), p. 4022-4027
    Abstract: Diatoms are important components of the biological community and food web in the aquatic environment. Here, we report the characteristics of a single-stranded RNA (ssRNA) virus (CtenRNAV01) that infects the marine diatom Chaetoceros tenuissimus Meunier (Bacillariophyceae). The ca. 31-nm virus particle is icosahedral and lacks a tail. CtenRNAV01 forms crystalline arrays occupying most of the infected host's cytoplasm. By growth experiments, the lytic cycle and the burst size were estimated to be 〈 24 h and ∼1 × 10 4 infectious units per host cell, respectively. Stationary-phase C. tenuissimus cultures were shown to be more sensitive to CtenRNAV01 than logarithmic-phase cultures. The most noticeable feature of this virus is its exceptionally high yields of ∼10 10 infectious units ml −1 ; this is much higher than those of any other algal viruses previously characterized. CtenRNAV01 has two molecules of ssRNA of approximately 8.9 and 4.3 kb and three major proteins (33.5, 31.5, and 30.0 kDa). Sequencing of the total viral genome has produced only one large contig [9,431 bases excluding the poly(A) tail], suggesting considerable overlapping between the two RNA molecules. The monophyly of CtenRNAV01 compared to another diatom-infecting virus, Rhizosolenia setigera RNA virus, was strongly supported in a maximum likelihood phylogenetic tree constructed based on the concatenated amino acid sequences of the RNA-dependent RNA polymerase domains. Although further analysis is required to determine the detailed classification and nomenclature of this virus, these data strongly suggest the existence of a diatom-infecting ssRNA virus group in natural waters.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society for Microbiology ; 2008
    In:  Applied and Environmental Microbiology Vol. 74, No. 10 ( 2008-05-15), p. 3105-3111
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 74, No. 10 ( 2008-05-15), p. 3105-3111
    Abstract: Viruses are believed to be significant pathogens for phytoplankton. Usually, they infect a single algal species, and often their infection is highly strain specific. However, the detailed molecular background of the strain specificity and its ecological significance have not been sufficiently understood. Here, we investigated the temporal changes in viral RNA accumulation and virus-induced cell lysis using a bloom-forming dinoflagellate Heterocapsa circularisquama and its single-stranded RNA virus, HcRNAV. We observed at least three host response patterns to virus inoculation: sensitive, resistant, and delayed lysis. In the sensitive response, the host cell culture was permissive for viral RNA replication and apparent cell lysis was observed; in contrast, resistant cell culture was nonpermissive for viral RNA replication and not lysed. In the delayed-lysis response, although viral RNA replication occurred, virus-induced cell lysis was faint and remarkably delayed. In addition, the number of infectious virus particles released to the culture supernatant at 12 days postinoculation was comparable to that of the sensitive strain. By further analysis, a few strains were characterized as variants of the delayed-lysis strain. These observations indicate that the response of H. circularisquama to HcRNAV infection is highly diverse.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Society for Microbiology ; 2009
    In:  Applied and Environmental Microbiology Vol. 75, No. 8 ( 2009-04-15), p. 2375-2381
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 75, No. 8 ( 2009-04-15), p. 2375-2381
    Abstract: Diatoms are very significant primary producers in the world's oceans. Various environmental factors affect the depletion of diatom populations. The importance of viruses as a potential mortality source has recently been recognized. We isolated and characterized a new diatom virus ( Chaetoceros socialis f. radians RNA virus [CsfrRNAV]) causing the lysis of the bloom-forming species Chaetoceros socialis Lauder f. radians (Schütt) Proschkina-Lavrenko. The virus infectious to C. socialis f. radians was isolated from water samples collected in Hiroshima Bay. Here we show the physiology, morphology, and genome characteristics of the virus clone. Virions were 22 nm in diameter and accumulated in the cytoplasm of the host cells. The latent period and the burst size were estimated to be 〈 48 h and 66 infectious units per host cell, respectively. CsfrRNAV harbors a single-stranded RNA (ssRNA) genome and encodes at least three polypeptides of 32.0, 28.5, and 25.0 kDa. Sequencing analysis shows the length of the genome is 9,467 bases, excluding a poly(A) tail. The monophyly of CsfrRNAV and other diatom-infecting RNA viruses, Rhizosolenia setigera RNA virus and Chaetoceros tenuissimus RNA virus, was strongly supported by phylogenetic analysis based on the amino acid sequence of the RNA-dependent RNA polymerase domains. This suggested a new ssRNA virus family, Bacillariornaviridae. This discovery of CsfrRNAV may aid in further understanding the ecological dynamics of the C. socialis f. radians population in nature and the relationships between ssRNA diatom viruses and their hosts.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2009
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...