GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ruseckas, Arvydas  (3)
  • 2020-2024  (3)
  • Biodiversity Research  (3)
Material
Language
Years
  • 2020-2024  (3)
Year
FID
  • Biodiversity Research  (3)
  • 1
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 289, No. 1969 ( 2022-02-23)
    Abstract: The euphotic–mesophotic transition is characterized by dramatic changes in environmental conditions, which can significantly alter the functioning of ecosystem engineers and the structure of their associated communities. However, the drivers of biodiversity change across the euphotic–mesophotic transition remain unclear. Here, we investigated the mechanisms affecting the biodiversity-supporting potential of free-living red coralline algae—globally important habitat creators—towards mesophotic depths. Across a 73 m depth gradient, we observed a general decline in macrofaunal biodiversity (fauna abundance, taxon richness and alpha diversity), but an increase in beta-diversity (i.e. variation between assemblages) at the deepest site (86 m depth, where light levels were less than 1% surface irradiance). We identified a gradient in abundance decline rather than distinct ecological shifts, driven by a complex interaction between declining light availability, declining size of the coralline algal host individuals and a changing host taxonomy. However, despite abundance declines, high between-assemblage variability at deeper depths allowed biodiversity-supporting potential to be maintained, highlighting their importance as coastal refugia.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2022
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 290, No. 2008 ( 2023-10-11)
    Abstract: Red coralline algae are the deepest living macroalgae, capable of creating spatially complex reefs from the intertidal to 100+ m depth with global ecological and biogeochemical significance. How these algae maintain photosynthetic function under increasingly limiting light intensity and spectral availability is key to explaining their large depth distribution. Here, we investigated the photo- and chromatic acclimation and morphological change of free-living red coralline algae towards mesophotic depths in the Fernando do Noronha archipelago, Brazil. From 13 to 86 m depth, thalli tended to become smaller and less complex. We observed a dominance of the photo-acclimatory response, characterized by an increase in photosynthetic efficiency and a decrease in maximum electron transport rate. Chromatic acclimation was generally stable across the euphotic-mesophotic transition with no clear depth trend. Taxonomic comparisons suggest these photosynthetic strategies are conserved to at least the Order level. Light saturation necessitated the use of photoprotection to 65 m depth, while optimal light levels were met at 86 m. Changes to the light environment (e.g. reduced water clarity) due to human activities therefore places these mesophotic algae at risk of light limitation, necessitating the importance of maintaining good water quality for the conservation and protection of mesophotic habitats.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2023
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  BMC Biology Vol. 20, No. 1 ( 2022-12-27)
    In: BMC Biology, Springer Science and Business Media LLC, Vol. 20, No. 1 ( 2022-12-27)
    Abstract: Despite a global prevalence of photosynthetic organisms in the ocean’s mesophotic zone (30–200+ m depth), the mechanisms that enable photosynthesis to proceed in this low light environment are poorly defined. Red coralline algae are the deepest known marine benthic macroalgae — here we investigated the light harvesting mechanism and mesophotic acclimatory response of the red coralline alga Lithothamnion glaciale . Results Following initial absorption by phycourobilin and phycoerythrobilin in phycoerythrin, energy was transferred from the phycobilisome to photosystems I and II within 120 ps. This enabled delivery of 94% of excitations to reaction centres. Low light intensity, and to a lesser extent a mesophotic spectrum, caused significant acclimatory change in chromophores and biliproteins, including a 10% increase in phycoerythrin light harvesting capacity and a 20% reduction in chlorophyll- a concentration and photon requirements for photosystems I and II. The rate of energy transfer remained consistent across experimental treatments, indicating an acclimatory response that maintains energy transfer. Conclusions Our results demonstrate that responsive light harvesting by phycobilisomes and photosystem functional acclimation are key to red algal success in the mesophotic zone.
    Type of Medium: Online Resource
    ISSN: 1741-7007
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2133020-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...