GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Jones, Owen T.  (1)
  • 2000-2004  (1)
  • Biodiversity Research  (1)
Material
Publisher
Person/Organisation
Language
Years
  • 2000-2004  (1)
Year
FID
  • Biodiversity Research  (1)
  • 1
    Online Resource
    Online Resource
    Wiley ; 2000
    In:  European Journal of Neuroscience Vol. 12, No. 2 ( 2000-02), p. 491-506
    In: European Journal of Neuroscience, Wiley, Vol. 12, No. 2 ( 2000-02), p. 491-506
    Abstract: Dysfunction of surviving axons which traverse the site of spinal cord injury (SCI) has been linked to altered sensitivity to the K + channel blocker 4‐aminopyridine (4‐AP) and appears to contribute to post‐traumatic neurological deficits although the underlying mechanisms remain unclear. In this study, sucrose gap electrophysiology in isolated dorsal column strips, Western blotting and confocal immunofluorescence microscopy were used to identify the K + channels associated with axonal dysfunction after chronic (6–8 weeks postinjury) clip compresssion SCI of the thoracic cord at T7 in rats. The K + channel blockers 4‐AP (200 μ m , 1 m m and 10 m m ) and α‐dendrotoxin (α‐DTX, 500 n m ) resulted in a significant relative increase in the amplitude and area of compound action potentials (CAP) recorded from chronically injured dorsal column axons in comparison with control noninjured preparations. In contrast, TEA (10 m m ) and CsCl (2 m m ) had similar effects on injured and control spinal cord axons. Western blotting and quantitative immunofluorescence microscopy showed increased expression of Kv1.1 and Kv1.2 K + channel proteins on spinal cord axons following injury. In addition, Kv1.1 and Kv1.2 showed a dispersed staining pattern along injured axons in contrast to a paired juxtaparanodal localization in uninjured spinal cord axons. Furthermore, labelled α‐DTX colocalized with Kv1.1 and Kv1.2 along axons. These findings suggest a novel mechanism of axonal dysfunction after SCI whereby an increased 4‐AP‐ and α‐DTX‐sensitive K + conductance, mediated in part by increased Kv1.1 and Kv1.2 K + channel expression, contributes to abnormal axonal physiology in surviving axons.
    Type of Medium: Online Resource
    ISSN: 0953-816X , 1460-9568
    Language: English
    Publisher: Wiley
    Publication Date: 2000
    detail.hit.zdb_id: 2005178-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...