GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Bioinformatics Vol. 36, No. 7 ( 2020-04-01), p. 2303-2305
    In: Bioinformatics, Oxford University Press (OUP), Vol. 36, No. 7 ( 2020-04-01), p. 2303-2305
    Abstract: Subpathways, which are defined as local gene subregions within a biological pathway, have been reported to be associated with the occurrence and development of cancer. The recent subpathway identification tools generally identify differentially expressed subpathways between normal and cancer samples. psSubpathway is a novel systems biology R-based software package that enables flexible identification of phenotype-specific subpathways in a cancer dataset with multiple categories (such as multiple subtypes and developmental stages of cancer). The operation modes include extraction of subpathways from pathway networks, inference with subpathway activities in the context of gene expression data, identification of subtype-specific subpathways, identification of dynamic-changed subpathways associated with the cancer developmental stage and visualization of subpathway activities of samples in different phenotypes. Its capabilities enable psSubpathway to find specific abnormal subpathways in the datasets with multi-phenotype categories and to fill the gaps in the recent tools. psSubpathway may identify more specific biomarkers to facilitate the development of tailored treatment for patients with cancer. Availability and implementation The package is implemented in R and available under GPL-2 license from the CRAN website (https://cran.r-project.org/web/packages/psSubpathway/). Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Bioinformatics Vol. 37, No. 16 ( 2021-08-25), p. 2491-2493
    In: Bioinformatics, Oxford University Press (OUP), Vol. 37, No. 16 ( 2021-08-25), p. 2491-2493
    Abstract: Cancer can be classified into various subtypes by its molecular, histological or clinical characteristics. Discovering cancer-subtype-specific drugs is a crucial step in personalized medicine. SubtypeDrug is a system biology R-based software package that enables the prioritization of subtype-specific drugs based on cancer expression data from samples of many subtypes. This provides a novel approach to identify the subtype-specific drug by considering biological functions regulated by drugs at the subpathway level. The operation modes include extraction of subpathways from biological pathways, identification of dysregulated subpathways induced by each drug, inference of sample-specific subpathway activity profiles, evaluation of drug-disease reverse association at the subpathways level, identification of cancer-subtype-specific drugs through subtype sample set enrichment analysis, and visualization of the results. Its capabilities enable SubtypeDrug to find subtype-specific drugs, which will fill the gaps in the recent tools which only identify the drugs for a particular cancer type. SubtypeDrug may help to facilitate the development of tailored treatment for patients with cancer.  Availability and implementation The package is implemented in R and available under GPL-2 license from the CRAN website (https://CRAN.R-project.org/package=SubtypeDrug). Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Gene, Elsevier BV, Vol. 503, No. 1 ( 2012-07), p. 101-109
    Type of Medium: Online Resource
    ISSN: 0378-1119
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2012
    detail.hit.zdb_id: 1491012-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Neuroinformatics Vol. 16, No. 3-4 ( 2018-10), p. 309-324
    In: Neuroinformatics, Springer Science and Business Media LLC, Vol. 16, No. 3-4 ( 2018-10), p. 309-324
    Type of Medium: Online Resource
    ISSN: 1539-2791 , 1559-0089
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2099780-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2013
    In:  Neuroinformatics Vol. 11, No. 3 ( 2013-7), p. 301-317
    In: Neuroinformatics, Springer Science and Business Media LLC, Vol. 11, No. 3 ( 2013-7), p. 301-317
    Type of Medium: Online Resource
    ISSN: 1539-2791 , 1559-0089
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2099780-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 49, No. D1 ( 2021-01-08), p. D969-D980
    Abstract: Long non-coding RNAs (lncRNAs) have been proven to play important roles in transcriptional processes and various biological functions. Establishing a comprehensive collection of human lncRNA sets is urgent work at present. Using reference lncRNA sets, enrichment analyses will be useful for analyzing lncRNA lists of interest submitted by users. Therefore, we developed a human lncRNA sets database, called LncSEA, which aimed to document a large number of available resources for human lncRNA sets and provide annotation and enrichment analyses for lncRNAs. LncSEA supports & gt;40 000 lncRNA reference sets across 18 categories and 66 sub-categories, and covers over 50 000 lncRNAs. We not only collected lncRNA sets based on downstream regulatory data sources, but also identified a large number of lncRNA sets regulated by upstream transcription factors (TFs) and DNA regulatory elements by integrating TF ChIP-seq, DNase-seq, ATAC-seq and H3K27ac ChIP-seq data. Importantly, LncSEA provides annotation and enrichment analyses of lncRNA sets associated with upstream regulators and downstream targets. In summary, LncSEA is a powerful platform that provides a variety of types of lncRNA sets for users, and supports lncRNA annotations and enrichment analyses. The LncSEA database is freely accessible at http://bio.liclab.net/LncSEA/index.php.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Bioinformatics, Oxford University Press (OUP), Vol. 29, No. 17 ( 2013-09-01), p. 2169-2177
    Abstract: Motivation: The accurate prediction of disease status is a central challenge in clinical cancer research. Microarray-based gene biomarkers have been identified to predict outcome and outperform traditional clinical parameters. However, the robustness of the individual gene biomarkers is questioned because of their little reproducibility between different cohorts of patients. Substantial progress in treatment requires advances in methods to identify robust biomarkers. Several methods incorporating pathway information have been proposed to identify robust pathway markers and build classifiers at the level of functional categories rather than of individual genes. However, current methods consider the pathways as simple gene sets but ignore the pathway topological information, which is essential to infer a more robust pathway activity. Results: Here, we propose a directed random walk (DRW)-based method to infer the pathway activity. DRW evaluates the topological importance of each gene by capturing the structure information embedded in the directed pathway network. The strategy of weighting genes by their topological importance greatly improved the reproducibility of pathway activities. Experiments on 18 cancer datasets showed that the proposed method yielded a more accurate and robust overall performance compared with several existing gene-based and pathway-based classification methods. The resulting risk-active pathways are more reliable in guiding therapeutic selection and the development of pathway-specific therapeutic strategies. Availability: DRW is freely available at http://210.46.85.180:8080/DRWPClass/ Contact:  lixia@hrbmu.edu.cn or dm42298@126.com Supplementary information:  Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4811 , 1367-4803
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2013
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Bioinformatics Vol. 38, No. 21 ( 2022-10-31), p. 4975-4977
    In: Bioinformatics, Oxford University Press (OUP), Vol. 38, No. 21 ( 2022-10-31), p. 4975-4977
    Abstract: Drug repurposing is an approach used to discover new indications for existing drugs. Recently, several computational approaches have been developed for drug repurposing in cancer. Nevertheless, no approaches have reported a systematic analysis of pathway crosstalk. Pathway crosstalk, which refers to the phenomenon of interaction or cooperation between pathways, is a critical aspect of tumor pathways that allows cancer cells to survive and acquire resistance to drug therapy. Here, we innovatively developed a system biology R-based software package, DRviaSPCN, to repurpose drugs for cancer via a subpathway (SP) crosstalk network. This package provides a novel approach to prioritize cancer candidate drugs by considering drug-induced SPs and their crosstalk effects. The operation modes mainly include construction of the SP network and calculation of the centrality scores of SPs to reflect the influence of SP crosstalk, calculation of enrichment scores of drug- and disease-induced dysfunctional SPs and weighted them by the centrality scores of SPs, evaluation of the drug–disease reverse association at the weighted SP level, identification of cancer candidate drugs and visualization of the results. Its capabilities enable DRviaSPCN to find cancer candidate drugs, which will complement the recent tools which did not consider crosstalk among pathways/SPs. DRviaSPCN may help to facilitate the development of drug discovery. Availability and implementation The package is implemented in R and available under GPL-2 license from the CRAN website (https://CRAN.R-project.org/package=DRviaSPCN). Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Bioinformatics, Oxford University Press (OUP), Vol. 36, No. Supplement_1 ( 2020-07-01), p. i371-i379
    Abstract: Brain imaging genetics studies the complex associations between genotypic data such as single nucleotide polymorphisms (SNPs) and imaging quantitative traits (QTs). The neurodegenerative disorders usually exhibit the diversity and heterogeneity, originating from which different diagnostic groups might carry distinct imaging QTs, SNPs and their interactions. Sparse canonical correlation analysis (SCCA) is widely used to identify bi-multivariate genotype–phenotype associations. However, most existing SCCA methods are unsupervised, leading to an inability to identify diagnosis-specific genotype–phenotype associations. Results In this article, we propose a new joint multitask learning method, named MT–SCCALR, which absorbs the merits of both SCCA and logistic regression. MT–SCCALR learns genotype–phenotype associations of multiple tasks jointly, with each task focusing on identifying one diagnosis-specific genotype–phenotype pattern. Meanwhile, MT–SCCALR cannot only select relevant SNPs and imaging QTs for each diagnostic group alone, but also allows the selection of those shared by multiple diagnostic groups. We derive an efficient optimization algorithm whose convergence to a local optimum is guaranteed. Compared with two state-of-the-art methods, MT–SCCALR yields better or similar canonical correlation coefficients and classification performances. In addition, it owns much better discriminative canonical weight patterns of great interest than competitors. This demonstrates the power and capability of MTSCCAR in identifying diagnostically heterogeneous genotype–phenotype patterns, which would be helpful to understand the pathophysiology of brain disorders. Availability and implementation The software is publicly available at https://github.com/dulei323/MTSCCALR. Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Bioinformatics, Oxford University Press (OUP), Vol. 34, No. 2 ( 2018-01-15), p. 278-285
    Abstract: Brain imaging genetics, which studies the linkage between genetic variations and structural or functional measures of the human brain, has become increasingly important in recent years. Discovering the bi-multivariate relationship between genetic markers such as single-nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is one major task in imaging genetics. Sparse Canonical Correlation Analysis (SCCA) has been a popular technique in this area for its powerful capability in identifying bi-multivariate relationships coupled with feature selection. The existing SCCA methods impose either the ℓ1-norm or its variants to induce sparsity. The ℓ0-norm penalty is a perfect sparsity-inducing tool which, however, is an NP-hard problem. Results In this paper, we propose the truncated ℓ1-norm penalized SCCA to improve the performance and effectiveness of the ℓ1-norm based SCCA methods. Besides, we propose an efficient optimization algorithms to solve this novel SCCA problem. The proposed method is an adaptive shrinkage method via tuning τ. It can avoid the time intensive parameter tuning if given a reasonable small τ. Furthermore, we extend it to the truncated group-lasso (TGL), and propose TGL-SCCA model to improve the group-lasso-based SCCA methods. The experimental results, compared with four benchmark methods, show that our SCCA methods identify better or similar correlation coefficients, and better canonical loading profiles than the competing methods. This demonstrates the effectiveness and efficiency of our methods in discovering interesting imaging genetic associations. Availability and implementation The Matlab code and sample data are freely available at http://www.iu.edu/∼shenlab/tools/tlpscca/. Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...