GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Grundle, Damian S.  (2)
  • Biodiversity Research  (2)
Material
Language
Years
FID
  • Biodiversity Research  (2)
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2020
    In:  Journal of Geophysical Research: Biogeosciences Vol. 125, No. 9 ( 2020-09)
    In: Journal of Geophysical Research: Biogeosciences, American Geophysical Union (AGU), Vol. 125, No. 9 ( 2020-09)
    Abstract: Ammonium oxidation is the dominant N 2 O production pathway in suboxic Saanich Inlet Addition of nitrate and nitrite stimulates N 2 O production in anoxic, N 2 O‐depleted deep water Oxygenation of anoxic water enhances N 2 O production via ammonium oxidation and increases water column N 2 O supersaturation level
    Type of Medium: Online Resource
    ISSN: 2169-8953 , 2169-8961
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biogeosciences, Copernicus GmbH, Vol. 16, No. 9 ( 2019-05-17), p. 2079-2093
    Abstract: Abstract. The open ocean is a major source of nitrous oxide (N2O), an atmospheric trace gas attributable to global warming and ozone depletion. Intense sea-to-air N2O fluxes occur in major oceanic upwelling regions such as the eastern tropical South Pacific (ETSP). The ETSP is influenced by the El Niño–Southern Oscillation that leads to inter-annual variations in physical, chemical, and biological properties in the water column. In October 2015, a strong El Niño event was developing in the ETSP; we conduct field observations to investigate (1) the N2O production pathways and associated biogeochemical properties and (2) the effects of El Niño on water column N2O distributions and fluxes using data from previous non-El Niño years. Analysis of N2O natural abundance isotopomers suggested that nitrification and partial denitrification (nitrate and nitrite reduction to N2O) were occurring in the near-surface waters; indicating that both pathways contributed to N2O effluxes. Higher-than-normal sea surface temperatures were associated with a deepening of the oxycline and the oxygen minimum layer. Within the shelf region, surface N2O supersaturation was nearly an order of magnitude lower than that of non-El Niño years. Therefore, a significant reduction of N2O efflux (75 %–95 %) in the ETSP occurred during the 2015 El Niño. At both offshore and coastal stations, the N2O concentration profiles during El Niño showed moderate N2O concentration gradients, and the peak N2O concentrations occurred at deeper depths during El Niño years; this was likely the result of suppressed upwelling retaining N2O in subsurface waters. At multiple stations, water-column inventories of N2O within the top 1000 m were up to 160 % higher than those measured in non-El Niño years, indicating that subsurface N2O during El Niño could be a reservoir for intense N2O effluxes when normal upwelling is resumed after El Niño.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...