GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (2)
  • Fisher, Jenny A.  (2)
  • Biodiversity Research  (2)
Material
Publisher
  • Springer Science and Business Media LLC  (2)
Language
Years
FID
  • Biodiversity Research  (2)
Subjects(RVK)
  • 1
    In: Ambio, Springer Science and Business Media LLC, Vol. 52, No. 5 ( 2023-05), p. 918-937
    Abstract: Environmental mercury (Hg) contamination is a global concern requiring action at national scales. Scientific understanding and regulatory policies are underpinned by global extrapolation of Northern Hemisphere Hg data, despite historical, political, and socioeconomic differences between the hemispheres that impact Hg sources and sinks. In this paper, we explore the primary anthropogenic perturbations to Hg emission and mobilization processes that differ between hemispheres and synthesize current understanding of the implications for Hg cycling. In the Southern Hemisphere (SH), lower historical production of Hg and other metals implies lower present-day legacy emissions, but the extent of the difference remains uncertain. More use of fire and higher deforestation rates drive re-mobilization of terrestrial Hg, while also removing vegetation that would otherwise provide a sink for atmospheric Hg. Prevalent Hg use in artisanal and small-scale gold mining is a dominant source of Hg inputs to the environment in tropical regions. Meanwhile, coal-fired power stations continue to be a significant Hg emission source and industrial production of non-ferrous metals is a large and growing contributor. Major uncertainties remain, hindering scientific understanding and effective policy formulation, and we argue for an urgent need to prioritize research activities in under-sampled regions of the SH.
    Type of Medium: Online Resource
    ISSN: 0044-7447 , 1654-7209
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120759-3
    detail.hit.zdb_id: 2040524-8
    SSG: 23
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Ambio, Springer Science and Business Media LLC, Vol. 52, No. 5 ( 2023-05), p. 897-917
    Abstract: Recent studies demonstrate a short 3–6-month atmospheric lifetime for mercury (Hg). This implies Hg emissions are predominantly deposited within the same hemisphere in which they are emitted, thus placing increasing importance on considering Hg sources, sinks and impacts from a hemispheric perspective. In the absence of comprehensive Hg data from the Southern Hemisphere (SH), estimates and inventories for the SH have been drawn from data collected in the NH, with the assumption that the NH data are broadly applicable. In this paper, we centre the uniqueness of the SH in the context of natural biogeochemical Hg cycling, with focus on the midlatitudes and tropics. Due to its uniqueness, Antarctica warrants an exclusive review of its contribution to the biogeochemical cycling of Hg and is therefore excluded from this review. We identify and describe five key natural differences between the hemispheres that affect the biogeochemical cycling of Hg: biome heterogeneity, vegetation type, ocean area, methylation hotspot zones and occurence of volcanic activities. We review the current state of knowledge of SH Hg cycling within the context of each difference, as well as the key gaps that impede our understanding of natural Hg cycling in the SH. The differences demonstrate the limitations in using NH data to infer Hg processes and emissions in the SH.
    Type of Medium: Online Resource
    ISSN: 0044-7447 , 1654-7209
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120759-3
    detail.hit.zdb_id: 2040524-8
    SSG: 23
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...