GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 374, No. 6573 ( 2021-12-10), p. 1370-1376
    Abstract: Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values. Recovery to 90% of old-growth values is fastest for soil ( 〈 1 decade) and plant functioning ( 〈 2.5 decades), intermediate for structure and species diversity (2.5 to 6 decades), and slowest for biomass and species composition ( 〉 12 decades). Network analysis shows three independent clusters of attribute recovery, related to structure, species diversity, and species composition. Secondary forests should be embraced as a low-cost, natural solution for ecosystem restoration, climate change mitigation, and biodiversity conservation.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 49 ( 2021-12-07)
    Abstract: One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, Springer Science and Business Media LLC, Vol. 530, No. 7589 ( 2016-2), p. 211-214
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Ecology, Wiley, Vol. 103, No. 5 ( 2015-09), p. 1276-1290
    Abstract: Successional gradients are ubiquitous in nature, yet few studies have systematically examined the evolutionary origins of taxa that specialize at different successional stages. Here we quantify successional habitat specialization in Neotropical forest trees and evaluate its evolutionary lability along a precipitation gradient. Theoretically, successional habitat specialization should be more evolutionarily conserved in wet forests than in dry forests due to more extreme microenvironmental differentiation between early and late‐successional stages in wet forest. We applied a robust multinomial classification model to samples of primary and secondary forest trees from 14 Neotropical lowland forest sites spanning a precipitation gradient from 788 to 4000 mm annual rainfall, identifying species that are old‐growth specialists and secondary forest specialists in each site. We constructed phylogenies for the classified taxa at each site and for the entire set of classified taxa and tested whether successional habitat specialization is phylogenetically conserved. We further investigated differences in the functional traits of species specializing in secondary vs. old‐growth forest along the precipitation gradient, expecting different trait associations with secondary forest specialists in wet vs. dry forests since water availability is more limiting in dry forests and light availability more limiting in wet forests. Successional habitat specialization is non‐randomly distributed in the angiosperm phylogeny, with a tendency towards phylogenetic conservatism overall and a trend towards stronger conservatism in wet forests than in dry forests. However, the specialists come from all the major branches of the angiosperm phylogeny, and very few functional traits showed any consistent relationships with successional habitat specialization in either wet or dry forests. Synthesis . The niche conservatism evident in the habitat specialization of Neotropical trees suggests a role for radiation into different successional habitats in the evolution of species‐rich genera, though the diversity of functional traits that lead to success in different successional habitats complicates analyses at the community scale. Examining the distribution of particular lineages with respect to successional gradients may provide more insight into the role of successional habitat specialization in the evolution of species‐rich taxa.
    Type of Medium: Online Resource
    ISSN: 0022-0477 , 1365-2745
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 3023-5
    detail.hit.zdb_id: 2004136-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Applied Ecology, Wiley, Vol. 56, No. 12 ( 2019-12), p. 2675-2686
    Abstract: A high level of variation of biodiversity recovery within a landscape during forest restoration presents obstacles to ensure large‐scale, cost‐effective and long‐lasting ecological restoration. There is an urgent need to predict landscape variation in forest restoration success at a global scale. We conducted a meta‐analysis comprising 135 study landscapes to predict and map landscape variation in forest restoration success in tropical and temperate forest biomes. Our analysis was based on the amount of forest cover within a landscape — a key driver of forest restoration success. We contrasted 17 generalized linear models measuring forest cover at different landscape sizes (with buffers varying from 5 to 200 km radii). We identified the most plausible model to predict and map landscape variation in forest restoration success. We then weighted landscape variation by the amount of potentially restorable areas (agriculture and pasture land areas) within the same landscape. Finally, we estimated restoration costs of implementing Bonn Challenge commitments in three specific temperate and tropical forest biome types in the United States, Brazil and Uganda. Landscape variation decreased exponentially as the amount of forest cover increased in the landscape, with stronger effects within a 5 km radius. Thirty‐eight per cent of forest biomes have landscapes with more than 27% of forest cover and showed levels of landscape variation below 10%. Landscapes with less than 6% of forest cover showed levels of variation in forest restoration success above 50%. At the biome level, Tropical and Subtropical Moist Broadleaf Forests had the lowest (12.6%), whereas Tropical and Subtropical Dry Broadleaf Forests had the highest (22.9%) average of weighted landscape variation in forest restoration success. Our approach can lead to a reduction in implementation costs for each Bonn Challenge commitment between US$ 973 Mi and 9.9 Bi. Policy implications . Our approach identifies landscape characteristics that increase the likelihood of biodiversity recovery during forest restoration — and potentially the chances of natural regeneration and long‐term ecological sustainability and functionality. Identifying areas with low levels of landscape variation can help to reduce the risks and financial costs associated with implementing ambitious restoration commitments.
    Type of Medium: Online Resource
    ISSN: 0021-8901 , 1365-2664
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020408-5
    detail.hit.zdb_id: 410405-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Conservation Letters, Wiley, Vol. 14, No. 2 ( 2021-03)
    Abstract: Natural regeneration is key for large‐scale forest restoration, yet it may lead to different biodiversity outcomes depending on socio‐environmental context. We combined the results of a global meta‐analysis to quantify how biodiversity recovery in naturally regenerating forests deviates from biodiversity values in reference old‐growth forests, with structural equation modeling, to identify direct and indirect associations between socioeconomic, biophysical and ecological factors and deviation in biodiversity recovery at a landscape scale. Low deviation within a landscape means higher chances of multiple sites in naturally regenerating forests successfully recovering biodiversity compared to reference forests. Deviation in biodiversity recovery was directly negatively associated with the percentage of cropland, forest cover, and positively associated with the percentage of urban areas in the surrounding landscape. These three factors mediated the indirect associations with rural population size, recent gross deforestation, time since natural regeneration started, mean annual temperature, mean annual water deficit, road density, land opportunity cost, percentage cover of strictly protected forest areas, and human population variation in the surrounding landscape. We suggest that natural forest restoration should be prioritized in landscapes with both low socioeconomic pressures on land use conversion to pasturelands and urban areas, and high percentage of forest cover.
    Type of Medium: Online Resource
    ISSN: 1755-263X , 1755-263X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2430375-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Restoration Ecology, Wiley, Vol. 27, No. 2 ( 2019-03), p. 361-370
    Abstract: Consideration of soil quality indicators is fundamental for understanding and managing ecosystems. Despite the evidence regarding the importance of soil for provision of local and global ecosystem services, such as water regulation and carbon sequestration, soil remains an under‐investigated and undermined aspect of the environment. Here we evaluate to what extent soil indicators are taken into account in restoration. We focused on the Brazilian Atlantic Forest, a highly fragmented biome and a global biodiversity hotspot. We conducted a systematic literature review and we showed that the majority (59%) of the studies on restoration did not consider any soil indicator. Studies that demonstrated the importance of soil indicators most commonly reported soil pH (71%, n = 44), followed by potassium content (66%, n = 41) and phosphorus (64.5%, n = 40), while the least reported indicator was water retention (6.5%, n = 4). Only 40% of the retrieved studies included information about reference sites or project baseline information. We complement our literature review with a case study on restoration in two areas of the Atlantic Forest. We found a relation between soil indicators such as soil organic matter, nitrogen, sodium and sand content, and aboveground indicators, confirming a necessity to include soil screening in restoration. Moreover, we found that prior to restoration none of these soil indicators were analyzed. This study highlights the gap that exists in soil data in restoration in studies on the Brazilian Atlantic Forest. We urge scientists and practitioners to include basic soil analysis to maximize the successful outcomes of restoration.
    Type of Medium: Online Resource
    ISSN: 1061-2971 , 1526-100X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020952-6
    detail.hit.zdb_id: 914746-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Conservation Biology, Wiley, Vol. 36, No. 3 ( 2022-06)
    Abstract: Predicción de la Recuperación de la Biodiversidad a Escala de Paisaje según la Regeneración Natural del Bosque Tropical Resumen La regeneración natural del bosque es una solución rentable para la recuperación de la biodiversidad basada en la naturaleza, sin embargo, los diferentes factores socioambientales pueden derivar en resultados variables. Cómo predecir la ubicación en donde la regeneración natural del bosque recuperará los niveles de biodiversidad, los cuales son un indicador del valor de la conservación y un suministro potencial de diferentes servicios ambientales, es un vacío de conocimiento importante en la planeación de la restauración forestal. Buscamos predecir y mapear la recuperación a escala de paisaje de la riqueza de especies y la abundancia total de vertebrados, invertebrados y plantas en bosques tropicales y subtropicales de segundo crecimiento para guiar la planeación de la restauración. Primero, realizamos un metaanálisis mundial para cuantificar la medida a la que se desvió la recuperación de la riqueza y la abundancia total de especies en los bosques de segundo crecimiento de los valores de biodiversidad en los bosques antiguos referenciales en el mismo paisaje. Después, utilizamos un algoritmo de aprendizaje automático y un conjunto integral de factores socioambientales para predecir espacialmente la desviación a escala de paisaje para después mapearla. Los modelos explicaron en promedio el 34% de la varianza observada en la recuperación (rango de 9‐51%). La recuperación de la biodiversidad a escala de paisaje en los bosques de segundo crecimiento pudo predecirse espacialmente con base en los factores socioambientales del paisaje (demografía humana, uso y cobertura del suelo, alteraciones naturales y antropogénicas, productividad del ecosistema, tipo de topografía y de suelo); fue significativamente más alta para la riqueza de especies que para la abundancia total de vertebrados (desviación media pronosticada ajustada al rango de 0.09 versus 0.34) e invertebrados (0.2 versus 0.35) pero no para las plantas (las cuales mostraron una recuperación similar para ambas medidas [0.24 versus 0.25]); y tuvo una correlación positiva para la abundancia de especies de plantas y vertebrados (Pearson r =0.45, p =0.001). Nuestra estrategia puede ayudar a identificar los paisajes de bosques tropicales y subtropicales con un potencial alto para la recuperación de la biodiversidad por medio de la regeneración natural del bosque.
    Type of Medium: Online Resource
    ISSN: 0888-8892 , 1523-1739
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020041-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Biotropica, Wiley, Vol. 53, No. 2 ( 2021-03), p. 496-508
    Abstract: A regeneração natural é um processo influenciado por diversos fatores locais e de paisagem, o qual aumentou significativamente a cobertura florestal nativa em algumas regiões. Diversos estudos exploraram os principais fatores espaciais de aumento de cobertura florestal, no entanto, pouco se sabe sobre o efeito destes nos atributos das florestas regeneradas. Este trabalho objetiva quantificar os efeito relativo de fatores locais (idade da floresta, área basal de Eucalyptus , declividade, fertilidade e teor de argila do solo) e de paisagem (uso do solo no entorno, distância de cursos d’água e quantidade e mudança da cobertura florestal do entorno) sobre a biomassa, densidade de espécies e diversidade filogenética de árvores nativas nestas florestas regeneradas. Foram amostradas 44 florestas que regeneraram em pastagens e plantios de Eucalyptus por cerca de 11–46 anos em paisagens agrícolas da Mata Atlântica do Sudeste brasileiro. Foram utilizados modelos lineares generalizados mistos para quantificar o efeito de cada fator nos atributos florestais. Somente a área basal de eucalipto e a proximidade com cana‐de‐açúcar apresentaram um efeito negativo consistente na biomassa florestal, enquanto outros fatores estavam entre os melhores modelos para estimar atributos da floresta, mas seu efeito variou: a biomassa de espécies nativas aumentou com a idade, mas o efeito não foi consistente. De maneira semelhante, a riqueza de espécies e diversidade filogenética foram principalmente afetadas por fatores de paisagens como maior cobertura florestal do entorno. Em paisagens tropicais agrícolas, a restauração florestal efetiva requer mais do que tempo, já que a idade da floresta pode ser menos determinante dos atributos florestais do que o uso antrópico e a cobertura florestal circundante. Desta forma, restauração florestal pode ser melhorada através de intervenções e políticas públicas que promovam atividades humanas menos impactantes e aumentem a cobertura florestal.
    Type of Medium: Online Resource
    ISSN: 0006-3606 , 1744-7429
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2052061-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Ecological Applications, Wiley, Vol. 28, No. 2 ( 2018-03), p. 373-384
    Abstract: Mixed tree plantings and natural regeneration are the main restoration approaches for recovering tropical forests worldwide. Despite substantial differences in implementation costs between these methods, little is known regarding how they differ in terms of ecological outcomes, which is key information for guiding decision making and cost‐effective restoration planning. Here, we compared the early ecological outcomes of natural regeneration and tree plantations for restoring the Brazilian Atlantic Forest in agricultural landscapes. We assessed and compared vegetation structure and composition in young (7–20 yr old) mixed tree plantings ( PL ), second‐growth tropical forests established on former pastures ( SG p), on former Eucalyptus spp. plantations ( SG e), and in old‐growth reference forests (Ref). We sampled trees with diameter at breast height ( DBH) 1–5 cm (saplings) and trees at DBH 〉 5 cm (trees) in a total of 32 20 × 45 m plots established in these landscapes. Overall, the ecological outcomes of natural regeneration and restoration plantations were markedly different. SG e forests showed higher abundance of large ( DBH   〉  20 cm) nonnative species, of which 98% were resprouting Eucalyptus trees, than SG p and PL , and higher total aboveground biomass; however, aboveground biomass of native species was higher in PL than in SG e. PL forests had lower abundance of native saplings and lianas than both naturally established second‐growth forests, and lower proportion of animal dispersed saplings than SG e, probably due to higher isolation from native forest remnants. Rarefied species richness of trees was lower in SG p, intermediate in SG e and Ref and higher in PL , whereas rarefied species richness of saplings was higher in SG than in Ref. Species composition differed considerably among regeneration types. Although these forests are inevitably bound to specific landscape contexts and may present varying outcomes as they develop through longer time frames, the ecological particularities of forests established through different restoration approaches indicate that naturally established forests may not show similar outcomes to mixed tree plantings. The results of this study underscore the importance that restoration decisions need to be based on more robust expectations of outcomes that allow for a better analysis of the cost‐effectiveness of different restoration approaches before scaling‐up forest restoration in the tropics.
    Type of Medium: Online Resource
    ISSN: 1051-0761 , 1939-5582
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2010123-5
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...