GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (7)
  • Proceedings of the National Academy of Sciences  (7)
  • Biodiversity Research  (7)
  • Natural Sciences  (7)
Material
  • Online Resource  (7)
Publisher
  • Proceedings of the National Academy of Sciences  (7)
Language
FID
Subjects(RVK)
RVK
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 19 ( 2017-05-09)
    Abstract: The carcinogenic mechanism of extrahepatic cholangiocarcinoma (ECC) is unclear, due at least in part to the lack of an appropriate mouse model. Because human studies have reported frequent genetic alterations in the Ras- and TGFβ/SMAD-signaling pathways in ECC, mice with tamoxifen-inducible, duct-cell–specific Kras activation and a TGFβ receptor type 2 (TGFβR2) deletion were first generated by crossing LSL-Kras G12D , Tgfbr2 flox/flox , and K19 CreERT mice ( KT-K19 CreERT ). However, KT-K19 CreERT mice showed only mild hyperplasia of biliary epithelial cells (BECs) in the extrahepatic bile duct (EHBD) and died within 7 wk, probably a result of lung adenocarcinomas. Next, to analyze the additional effect of E-cadherin loss, KT-K19 CreERT mice were crossed with CDH1 flox/flox mice ( KTC-K19 CreERT ). Surprisingly, KTC-K19 CreERT mice exhibited a markedly thickened EHBD wall accompanied by a swollen gallbladder within 4 wk after tamoxifen administration. Histologically, invasive periductal infiltrating-type ECC with lymphatic metastasis was observed. Time-course analysis of EHBD revealed that recombined BECs lining the bile duct lumen detached due to E-cadherin loss, whereas recombined cells could survive in the peribiliary glands (PBGs), which are considered a BEC stem-cell niche. Detached dying BECs released high levels of IL-33, as determined by microarray analysis using biliary organoids, and stimulated inflammation and a regenerative response by PBGs, leading eventually to ECC development. Cell lineage tracing suggested PBGs as the cellular origin of ECC. IL-33 cooperated with Kras and TGFβR2 mutations in the development of ECC, and anti–IL-33 treatment suppressed ECC development significantly. Thus, this mouse model provided insight into the carcinogenic mechanisms, cellular origin, and potential therapeutic targets of ECC.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1997
    In:  Proceedings of the National Academy of Sciences Vol. 94, No. 1 ( 1997-01-07), p. 233-236
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 94, No. 1 ( 1997-01-07), p. 233-236
    Abstract: Hepatitis C virus (HCV), a major causative agent of non-A, non-B chronic hepatitis, is also suggested to be associated with extrahepatic manifestations such as mixed cryoglobulinemia and glomerulonephritis. Two independent lines of transgenic mice carrying the HCV envelope genes have been shown previously to express the HCV envelope proteins in organs, including the liver and salivary glands, which results in no pathological changes in the liver. Further analysis of these animals now has revealed that they develop an exocrinopathy involving the salivary and lachrymal glands. This pathology resembles Sjögren syndrome, which also is suggested to have a possible association with chronic hepatitis C. These observations suggest that HCV might be involved in the pathogenesis of sialadenitis in humans and that this transgenic mouse system would be a good animal model for the study of HCV infection.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1997
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 3 ( 2014-01-21), p. 1090-1095
    Abstract: E-cadherin is an important adhesion molecule whose loss is associated with progression and poor prognosis of liver cancer. However, it is unclear whether the loss of E-cadherin is a real culprit or a bystander in liver cancer progression. In addition, the precise role of E-cadherin in maintaining liver homeostasis is also still unknown, especially in vivo. Here we demonstrate that liver-specific E-cadherin knockout mice develop spontaneous periportal inflammation via an impaired intrahepatic biliary network, as well as periductal fibrosis, which resembles primary sclerosing cholangitis. Inducible gene knockout studies identified E-cadherin loss in biliary epithelial cells as a causal factor of cholangitis induction. Furthermore, a few of the E-cadherin knockout mice developed spontaneous liver cancer. When knockout of E-cadherin is combined with Ras activation or chemical carcinogen administration, E-cadherin knockout mice display markedly accelerated carcinogenesis and an invasive phenotype associated with epithelial–mesenchymal transition, up-regulation of stem cell markers, and elevated ERK activation. Also in human hepatocellular carcinoma, E-cadherin loss correlates with increased expression of mesenchymal and stem cell markers, and silencing of E-cadherin in hepatocellular carcinoma cell lines causes epithelial–mesenchymal transition and increased invasiveness, suggesting that E-cadherin loss can be a causal factor of these phenotypes. Thus, E-cadherin plays critical roles in maintaining homeostasis and suppressing carcinogenesis in the liver.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 22 ( 2021-06)
    Abstract: Immunoevasins are viral proteins that prevent antigen presentation on major histocompatibility complex (MHC) class I, thus evading host immune recognition. Hepatitis C virus (HCV) evades immune surveillance to induce chronic infection; however, how HCV-infected hepatocytes affect immune cells and evade immune recognition remains unclear. Herein, we demonstrate that HCV core protein functions as an immunoevasin. Its expression interfered with the maturation of MHC class I molecules catalyzed by the signal peptide peptidase (SPP) and induced their degradation via HMG-CoA reductase degradation 1 homolog, thereby impairing antigen presentation to CD8 + T cells. The expression of MHC class I in the livers of HCV core transgenic mice and chronic hepatitis C patients was impaired but was restored in patients achieving sustained virological response. Finally, we show that the human cytomegalovirus US2 protein, possessing a transmembrane region structurally similar to the HCV core protein, targets SPP to impair MHC class I molecule expression. Thus, SPP represents a potential target for the impairment of MHC class I molecules by DNA and RNA viruses.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 5 ( 2007-01-30), p. 1661-1666
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 5 ( 2007-01-30), p. 1661-1666
    Abstract: Hepatitis C virus (HCV) is a major cause of chronic liver disease that frequently leads to steatosis, cirrhosis, and eventually hepatocellular carcinoma (HCC). HCV core protein is not only a component of viral particles but also a multifunctional protein because liver steatosis and HCC are developed in HCV core gene-transgenic (CoreTg) mice. Proteasome activator PA28γ/REGγ regulates host and viral proteins such as nuclear hormone receptors and HCV core protein. Here we show that a knockout of the PA28γ gene induces the accumulation of HCV core protein in the nucleus of hepatocytes of CoreTg mice and disrupts development of both hepatic steatosis and HCC. Furthermore, the genes related to fatty acid biosynthesis and srebp-1c promoter activity were up-regulated by HCV core protein in the cell line and the mouse liver in a PA28γ-dependent manner. Heterodimer composed of liver X receptor α (LXRα) and retinoid X receptor α (RXRα) is known to up-regulate srebp-1c promoter activity. Our data also show that HCV core protein enhances the binding of LXRα/RXRα to LXR-response element in the presence but not the absence of PA28γ. These findings suggest that PA28γ plays a crucial role in the development of liver pathology induced by HCV infection.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 50 ( 2017-12-12)
    Abstract: Signal peptide peptidase (SPP) is an intramembrane aspartic protease involved in the maturation of the core protein of hepatitis C virus (HCV). The processing of HCV core protein by SPP has been reported to be critical for the propagation and pathogenesis of HCV. Here we examined the inhibitory activity of inhibitors for γ-secretase, another intramembrane cleaving protease, against SPP, and our findings revealed that the dibenzoazepine-type structure in the γ-secretase inhibitors is critical for the inhibition of SPP. The spatial distribution showed that the γ-secretase inhibitor compound YO-01027 with the dibenzoazepine structure exhibits potent inhibiting activity against SPP in vitro and in vivo through the interaction of Val223 in SPP. Treatment with this SPP inhibitor suppressed the maturation of core proteins of all HCV genotypes without the emergence of drug-resistant viruses, in contrast to the treatment with direct-acting antivirals. YO-01027 also efficiently inhibited the propagation of protozoa such as Plasmodium falciparum and Toxoplasma gondii . These data suggest that SPP is an ideal target for the development of therapeutics not only against chronic hepatitis C but also against protozoiasis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 2 ( 2011-01-11), p. 780-785
    Abstract: Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular functions and are highly active in many types of human cancers. Apoptosis signal-regulating kinase 1 (ASK1) is an upstream MAPK involved in apoptosis, inflammation, and carcinogenesis. This study investigated the role of ASK1 in the development of gastric cancer. In human gastric cancer specimens, we observed increased ASK1 expression, compared to nontumor epithelium. Using a chemically induced murine gastric tumorigenesis model, we observed increased tumor ASK1 expression, and ASK1 knockout mice had both fewer and smaller tumors than wild-type (WT) mice. ASK1 siRNA inhibited cell proliferation through the accumulation of cells in G1 phase of the cell cycle, and reduced cyclin D1 expression in gastric cancer cells, whereas these effects were uncommon in other cancer cells. ASK1 overexpression induced the transcription of cyclin D1, through AP-1 activation, and ASK1 levels were regulated by cyclin D1, via the Rb–E2F pathway. Exogenous ASK1 induced cyclin D1 expression, followed by elevated expression of endogenous ASK1. These results indicate an autoregulatory mechanism of ASK1 in the development of gastric cancer. Targeting this positive feedback loop, ASK1 may present a potential therapeutic target for the treatment of advanced gastric cancer.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...