GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Universidad Nacional Mayor de San Marcos, Vicerectorado de Investigacion ; 2023
    In:  Revista Peruana de Biología Vol. 30, No. 2 ( 2023-06-28), p. e24425-
    In: Revista Peruana de Biología, Universidad Nacional Mayor de San Marcos, Vicerectorado de Investigacion, Vol. 30, No. 2 ( 2023-06-28), p. e24425-
    Abstract: The study focused on the assemblage of ‘living’ benthic foraminifera (stained with Rose Bengal) in the surface sediments of El Ferrol Bay (Chimbote, 9°S). Twelve sampling sites were selected at depths ranging from 4.5 to 27 meters in September 2015. Water samples were collected near the seafloor to determine dissolved oxygen (DO), pH, and nutrient (nitrate and phosphate). Sediment samples were analysed for total organic matter (TOM) and the chlorophyll-a to phaeopigment ratio (chl-a/phaeo. Our findings confirm that this bay experiences hypoxic conditions at the seafloor (~2 mL/L) in addition to high dissolved nitrate levels. The assemblage was primarily composed of hyaline calcareous species, a porcelaneous calcareous species, and a soft-shelled foraminiferal species. Densities ranged from moderate to high, with the calcareous species Bolivina costata being the dominant species and B. elegantissima co-dominant in most sites. Based on our analysis, no significant differences were observed between the assemblages of living benthic foraminifera in the inner and outer bay. However, the influence of bottom nitrates on shallow-water foraminiferal species was notable. These results provide a baseline reference for future monitoring and calibration studies.
    Type of Medium: Online Resource
    ISSN: 1727-9933 , 1561-0837
    Language: Unknown
    Publisher: Universidad Nacional Mayor de San Marcos, Vicerectorado de Investigacion
    Publication Date: 2023
    detail.hit.zdb_id: 2112752-9
    SSG: 7,36
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biogeosciences, Copernicus GmbH, Vol. 17, No. 12 ( 2020-06-24), p. 3165-3182
    Abstract: Abstract. Deciphering the dynamics of dissolved oxygen in the mid-depth ocean during the last deglaciation is essential to understand the influence of climate change on modern oxygen minimum zones (OMZs). Many paleo-proxy records from the eastern Pacific Ocean indicate an extension of oxygen-depleted conditions during the deglaciation, but the degree of deoxygenation has not been quantified to date. The Peruvian OMZ, one of the largest OMZs in the world, is a key area to monitor such changes in near-bottom-water oxygenation in relation to changing climatic conditions. Here, we analysed the potential to use the composition of foraminiferal assemblages from the Peruvian OMZ as a quantitative redox proxy. A multiple regression analysis was applied to a joint dataset of living (rose-bengal-stained, fossilizable calcareous species) benthic foraminiferal distributions from the Peruvian continental margin. Bottom-water oxygen concentrations ([O2]BW) during sampling were used as the dependant variable. The correlation was significant (R2=0.82; p〈0.05), indicating that the foraminiferal assemblages are rather governed by oxygen availability than by the deposition of particulate organic matter (R2=0.53; p=0.31). We applied the regression formula to three sediment cores from the northern part of the Peruvian OMZ between 3 and 8∘ S and 997 and 1250 m water depth, thereby recording oxygenation changes at the lower boundary of the Peruvian OMZ. Each core displayed a similar trend of decreasing oxygen levels since the Last Glacial Maximum (LGM). The overall [O2]BW change from the LGM and the Holocene was constrained to 30 µmol kg−1 at the lower boundary of the OMZ.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Estuarine, Coastal and Shelf Science, Elsevier BV, Vol. 250 ( 2021-03), p. 107142-
    Type of Medium: Online Resource
    ISSN: 0272-7714
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 1466742-3
    detail.hit.zdb_id: 763369-5
    SSG: 21,3
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 289, No. 1974 ( 2022-05-11)
    Abstract: The evolution of crocodylians as sea dwellers remains obscure because living representatives are basically freshwater inhabitants and fossil evidence lacks crucial aspects about crocodylian occupation of marine ecosystems. New fossils from marine deposits of Peru reveal that crocodylians were habitual coastal residents of the southeastern Pacific (SEP) for approximately 14 million years within the Miocene ( ca 19 to 5 Ma), an epoch including the highest global peak of marine crocodylian diversity. The assemblage of the SEP comprised two long and slender-snouted (longirostrine) taxa of the Gavialidae: the giant Piscogavialis and a new early diverging species, Sacacosuchus cordovai . Although living gavialids ( Gavialis and Tomistoma ) are freshwater forms, this remarkable fossil record and a suite of evolutionary morphological analyses reveal that the whole evolution of marine crocodylians pertained to the gavialids and their stem relatives (Gavialoidea). This adaptive radiation produced two longirostrine ecomorphs with dissimilar trophic roles in seawaters and involved multiple transmarine dispersals to South America and most landmasses. Marine gavialoids were shallow sea dwellers, and their Cenozoic diversification was influenced by the availability of coastal habitats. Soon after the richness peak of the Miocene, gavialoid crocodylians disappeared from the sea, probably as part of the marine megafauna extinction of the Pliocene.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2022
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...