GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 362, No. 6410 ( 2018-10-05), p. 80-83
    Abstract: Biodiversity experiments have shown that species loss reduces ecosystem functioning in grassland. To test whether this result can be extrapolated to forests, the main contributors to terrestrial primary productivity, requires large-scale experiments. We manipulated tree species richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating multiple extinction scenarios, we found that richness strongly increased stand-level productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of carbon found in average monocultures and similar amounts as those of two commercial monocultures. Species richness effects were strongly associated with functional and phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this reduction was smaller at high shrub species richness. Our results encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 33 ( 2018-08-14), p. 8406-8411
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 33 ( 2018-08-14), p. 8406-8411
    Abstract: Several previous genomic studies have focused on adaptation to high elevations, but these investigations have been largely limited to endotherms. Snakes of the genus Thermophis are endemic to the Tibetan plateau and therefore present an opportunity to study high-elevation adaptations in ectotherms. Here, we report the de novo assembly of the genome of a Tibetan hot-spring snake ( Thermophis baileyi ) and then compare its genome to the genomes of the other two species of Thermophis , as well as to the genomes of two related species of snakes that occur at lower elevations. We identify 308 putative genes that appear to be under positive selection in Thermophis . We also identified genes with shared amino acid replacements in the high-elevation hot-spring snakes compared with snakes and lizards that live at low elevations, including the genes for proteins involved in DNA damage repair ( FEN1 ) and response to hypoxia ( EPAS1 ). Functional assays of the FEN1 alleles reveal that the Thermophis allele is more stable under UV radiation than is the ancestral allele found in low-elevation lizards and snakes. Functional assays of EPAS1 alleles suggest that the Thermophis protein has lower transactivation activity than the low-elevation forms. Our analysis identifies some convergent genetic mechanisms in high-elevation adaptation between endotherms (based on studies of mammals) and ectotherms (based on our studies of Thermophis ).
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 5 ( 2020-02-04), p. 2560-2569
    Abstract: De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains 〈 1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability ( h 2 ), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 12 ( 2012-03-20), p. 4609-4614
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 12 ( 2012-03-20), p. 4609-4614
    Abstract: The advent of powerful genomics technologies has uncovered many fundamental aspects of biology, including the mechanisms of cancer; however, it has not been appropriately matched by the development of global approaches to discover new medicines against human diseases. Here we describe a unique high-throughput s creening strategy by high-throughput sequencing, referred to as HTS 2 , to meet this challenge. This technology enables large-scale and quantitative analysis of gene matrices associated with specific disease phenotypes, therefore allowing screening for small molecules that can specifically intervene with disease-linked gene-expression events. By initially applying this multitarget strategy to the pressing problem of hormone-refractory prostate cancer, which tends to be accelerated by the current antiandrogen therapy, we identify Peruvoside, a cardiac glycoside, which can potently inhibit both androgen-sensitive and -resistant prostate cancer cells without triggering severe cytotoxicity. We further show that, despite transcriptional reprogramming in prostate cancer cells at different disease stages, the compound can effectively block androgen receptor-dependent gene expression by inducing rapid androgen receptor degradation via the proteasome pathway. These findings establish a genomics-based phenotypic screening approach capable of quickly connecting pathways of phenotypic response to the molecular mechanism of drug action, thus offering a unique pathway-centric strategy for drug discovery.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 381, No. 6662 ( 2023-09-08)
    Abstract: KRAS is one of the most frequently mutated genes in human cancer. Despite advances in the development of inhibitors that directly target mutant KRAS and the approval of KRAS G12C inhibitors sotorasib and adagrasib for the treatment of KRAS G12C -mutant non–small cell lung cancer (NSCLC) patients, multiple lines of clinical and preclinical evidence demonstrate that adaptive resistance to KRAS inhibitors (KRASi) is rapid and almost inevitable. The heterogeneous resistance mechanisms in patients and dose-limiting toxicity associated with targeting multiple KRASi resistance pathways—such as receptor tyrosine kinases (RTKs), extracellular signal–regulated kinase (ERK), and AKT–remain a major barrier to progress. RATIONALE Most cancers require a balanced protein homeostasis (proteostasis) network to maintain oncogenic growth. Therapeutic insults often disrupt proteostasis and induce proteotoxic stresses. Residual drug-tolerant cells must overcome imbalances in the proteostasis network to maintain survival. How a proteostasis network is orchestrated by driver oncogenes and the proteostasis reprogramming mechanisms that bypass oncogene addiction and allow for acquired resistance to targeted therapies remain largely unknown. In this study, we investigated the regulation of proteostasis by oncogenic KRAS and the rewiring of proteostasis network underlying the acquired resistance to KRAS inhibition. RESULTS We show that oncogenic KRAS is critical for protein quality control in cancer cells. Genetic or pharmacological inhibition of oncogenic KRAS rapidly inactivated both cytosolic and endoplasmic reticulum (ER) protein quality control machinery, two essential components of the proteostasis network, through inhibition of the master regulators heat shock factor 1 (HSF1) and inositol-requiring enzyme 1α (IRE1α). However, residue cancer cells that survive KRASi directly reactivated IRE1α through an ER stress–independent phosphorylation mechanism that reestablished proteostasis and sustained acquired resistance to KRAS inhibition. We identified four oncogenic signaling–regulated phosphorylation sites in IRE1α (Ser 525 , Ser 529 , Ser 549 , and Thr 973 ) that are distinct from IRE1α autophosphorylation sites but are required for enhanced protein stability. The phosphorylation of IRE1α at these sites prevents IRE1α binding with the SEL1L/HRD1 E3 ligase complex, thus impairing the ubiquitination-dependent degradation of IRE1α and stabilizing the protein. These sites are the convergence points of multiple resistance mechanisms in KRASi-resistant tumors. RTK-mediated reactivation of ERK and hyperactivation of AKT sustained the unconventional phosphorylation of IRE1α in the KRASi-resistant tumors, which consequently restored its protein stability and reestablished proteostasis. Genetic or pharmacological suppression of IRE1α collapsed the rewired proteostasis network and overcame resistance to KRAS–MAPK (mitogen-activated protein kinase) inhibitors. CONCLUSION This study reveals the direct cross-talk between oncogenic signaling and the protein quality control machinery and uncovers the mechanisms that account for the proteostasis rewiring in response to KRAS inhibition. Multiple resistance mechanisms converge on IRE1α through ER stress–independent phosphorylation to restore proteostasis and promote KRASi-resistant tumor growth. Targeting this key convergence point represents an effective therapeutic strategy to overcome KRASi resistance. Proteostasis reprogramming upon KRAS inhibition. Inhibition of oncogenic KRAS inactivates both cytosolic and ER protein quality control machinery by inhibiting HSF1 and IRE1α. Residual cells that survive KRASi directly restore IRE1α phosphorylation through receptor tyrosine kinase–mediated reactivation of ERK and hyperactivation of AKT, preventing IRE1α from SEL1L/HRD1–mediated ubiquitination and degradation. Multiple heterogeneous resistance pathways converge on IRE1α to reestablish proteostasis and promote resistance to KRASi.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 7 ( 2005-02-15), p. 2430-2435
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 7 ( 2005-02-15), p. 2430-2435
    Abstract: The genomic sequences of severe acute respiratory syndrome coronaviruses from human and palm civet of the 2003/2004 outbreak in the city of Guangzhou, China, were nearly identical. Phylogenetic analysis suggested an independent viral invasion from animal to human in this new episode. Combining all existing data but excluding singletons, we identified 202 single-nucleotide variations. Among them, 17 are polymorphic in palm civets only. The ratio of nonsynonymous/synonymous nucleotide substitution in palm civets collected 1 yr apart from different geographic locations is very high, suggesting a rapid evolving process of viral proteins in civet as well, much like their adaptation in the human host in the early 2002–2003 epidemic. Major genetic variations in some critical genes, particularly the Spike gene, seemed essential for the transition from animal-to-human transmission to human-to-human transmission, which eventually caused the first severe acute respiratory syndrome outbreak of 2002/2003.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 40, No. 48 ( 2020-11-25), p. 9169-9185
    Abstract: Myosin X (Myo X) transports cargos to the tips of filopodia for cell adhesion, migration, and neuronal axon guidance. Deleted in Colorectal Cancer (DCC) is one of the Myo X cargos that is essential for Netrin-1-regulated axon pathfinding. The function of Myo X in axon development in vivo and the underlying mechanisms remain elusive. Here, we provide evidence for the role of Myo X in Netrin-1-DCC-regulated axon development in developing mouse neocortex. The knockout (KO) or knockdown (KD) of Myo X in cortical neurons of embryonic mouse brain impairs axon initiation and contralateral branching/targeting. Similar axon deficits are detected in Netrin-1-KO or DCC-KD cortical neurons. Further proteomic analysis of Myo X binding proteins identifies KIF13B (a kinesin family motor protein). The Myo X interaction with KIF13B is induced by Netrin-1. Netrin-1 promotes anterograde transportation of Myo X into axons in a KIF13B-dependent manner. KIF13B-KD cortical neurons exhibit similar axon deficits. Together, these results reveal Myo X-KIF13B as a critical pathway for Netrin-1-promoted axon initiation and branching/targeting. SIGNIFICANCE STATEMENT Netrin-1 increases Myosin X (Myo X) interaction with KIF13B, and thus promotes axonal delivery of Myo X and axon initiation and contralateral branching in developing cerebral neurons, revealing unrecognized functions and mechanisms underlying Netrin-1 regulation of axon development.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2020
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 41, No. 37 ( 2021-09-15), p. 7727-7741
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2021
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 35, No. 1 ( 2015-01-07), p. 36-52
    Abstract: Chronic pain is still a basic science and clinical challenge. Unraveling of the neurobiological mechanisms involved in chronic pain will offer novel targets for the development of therapeutic strategies. It is well known that central sensitization in the anterior cingulate cortex (ACC) plays a critical role in initiation, development, and maintenance of chronic pain. However, the underlying mechanisms still remain elusive. Here, we reported that caveolin-1 (Cav-1), a scaffolding protein in membrane rafts, was persistently upregulated and activated in the ACC neurons after chronic constriction injury (CCI) in mice. Knockdown or blocking of Cav-1 in the contralateral ACC to the injury side reversed CCI-induced pain behavioral and neuronal sensitization and overexpression of Cav-1 in the ipsilateral ACC-induced pain behavior in the unaffected hindpaw. Furthermore, we found that Cav-1 directly binding with NMDA receptor 2B subunit (NR2B) and promotion of NR2B surface levels in the ACC contributed to modulation of chronic neuropathic pain. Disrupting the interaction of Cav-1 and NR2B through microinjection of a short peptide derived from the C-terminal of NR2B into the ACC exhibited a significant anti-nociception effect associated with decrease of surface NR2B expression. Moreover, Cav-1 increased intracellular Ca 2+ concentration and activated the ERK/CREB signaling pathway in an NR2B-dependent manner in the ACC. Our findings implicate that Cav-1 in the ACC neurons modulates chronic neuropathic pain via regulation of NR2B and subsequent activation of ERK/CREB signaling, suggesting a possible caveolin-mediated process would participate in neuronal transmission pathways implicated in pain modulation.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2015
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2011
    In:  Proceedings of the National Academy of Sciences Vol. 108, No. 29 ( 2011-07-19), p. 12042-12047
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 29 ( 2011-07-19), p. 12042-12047
    Abstract: We present the analysis of the evolution of tumors in a case of hepatocellular carcinoma. This case is particularly informative about cancer growth dynamics and the underlying driving mutations. We sampled nine different sections from three tumors and seven more sections from the adjacent nontumor tissues. Selected sections were subjected to exon as well as whole-genome sequencing. Putative somatic mutations were then individually validated across all 9 tumor and 7 nontumor sections. Among the mutations validated, 24 were amino acid changes; in addition, 22 large indels/copy number variants ( 〉 1 Mb) were detected. These somatic mutations define four evolutionary lineages among tumor cells. Separate evolution and expansion of these lineages were recent and rapid, each apparently having only one lineage-specific protein-coding mutation. Hence, by using a cell-population genetic definition, this approach identified three coding changes (CCNG1, P62, and an indel/fusion gene) as tumor driver mutations. These three mutations, affecting cell cycle control and apoptosis, are functionally distinct from mutations that accumulated earlier, many of which are involved in inflammation/immunity or cell anchoring. These distinct functions of mutations at different stages may reflect the genetic interactions underlying tumor growth.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...