GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (7)
  • Biodiversity Research  (7)
  • Linguistics  (7)
  • 1
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 27, No. 19 ( 2007-05-09), p. 5249-5259
    Abstract: Transient forebrain ischemia induces delayed, selective neuronal death in the CA1 region of the hippocampus. The underlying molecular mechanisms are as yet unclear, but it is known that activation of L-type Ca 2+ channels specifically increases the expression of a group of genes required for neuronal survival. Accordingly, we examined temporal changes in L-type calcium-channel activity in CA1 and CA3 pyramidal neurons of rat hippocampus after transient forebrain ischemia by patch-clamp techniques. In vulnerable CA1 neurons, L-type Ca 2+ -channel activity was persistently downregulated after ischemic insult, whereas in invulnerable CA3 neurons, no change occurred. Downregulation of L-type calcium channels was partially caused by oxidation modulation in postischemic channels. Furthermore, L-type but neither N-type nor P/Q-type Ca 2+ -channel antagonists alone significantly inhibited the survival of cultured hippocampal neurons. In contrast, specific L-type calcium-channel agonist remarkably reduced neuronal cell death and restored the inhibited channels induced by nitric oxide donor. More importantly, L-type calcium-channel agonist applied after reoxygenation or reperfusion significantly decreased neuronal injury in in vitro oxygen-glucose deprivation ischemic model and in animals subjected to forebrain ischemia–reperfusion. Together, the present results suggest that ischemia-induced inhibition of L-type calcium currents may give rise to delayed death of neurons in the CA1 region, possibly via oxidation mechanisms. Our findings may lead to a new perspective on neuronal death after ischemic insult and suggest that a novel therapeutic approach, activation of L-type calcium channels, could be tested at late stages of reperfusion for stroke treatment.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2007
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 7 ( 2005-02-15), p. 2466-2470
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 7 ( 2005-02-15), p. 2466-2470
    Abstract: The class and effector functions of antibodies are modulated through the process of Ig heavy chain class switch recombination (CSR). CSR occurs between switch (S) regions that lie upstream of the various Ig heavy chain constant region exons. Molecular analyses of S-region functions have been hampered by their large size and repetitive nature. To test potential relationships between S-region size and efficiency of CSR, we generated normal B lymphocytes in which the 12-kb S region flanking the Cγ1 exons (Sγ1) was replaced with synthetic or endogenous S regions of various lengths. Replacement of Sγ1 with 1- and 2-kb synthetic sequences representing the Sγ1 core repeats or a 4-kb portion of the core endogenous Sγ1 region supported CSR frequencies that directly correlated with S-region length. These findings indicate that S-region size is an important factor in determining endogenous CSR efficiency. Moreover, these results also will allow the development of a systematic system to test the function of various S-region motifs by replacing endogenous S regions with synthetic S regions controlled for size effects.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 10 ( 2008-03-11), p. 3873-3878
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 10 ( 2008-03-11), p. 3873-3878
    Abstract: The CD4 gene is regulated in a stage-specific manner during T cell development, being repressed in CD4 − CD8 − double-negative (DN) and CD8 cells, but expressed in CD4 + CD8 + double-positive (DP) and CD4 cells. Furthermore, the expression/repression pattern is reversible in developing (DN and DP) thymocytes, but irreversible in mature (CD4 and CD8) T cells. Here, we explored the molecular mechanisms underlying this complex mode of regulation by examining the nucleoprotein structure of the CD4 locus throughout T cell development and in DN cells lacking the CD4 silencer. In DN cells, the CD4 enhancer is preloaded with multiple transcription activators, but p300 recruitment is impaired by the silencer that is associated with the repressor Runx1. DP cells achieve high-level CD4 expression via a combination of CD4 derepression and true activation, but Runx1 remains bound to the silencer that retains an open chromatin configuration. In CD4 cells, Runx1 dissociates from the silencer that has become less accessible, and CD4 transcription appears to be achieved via a mechanism distinct from that operating in DP cells. In CD8 cells, the CD4 promoter becomes incorporated into heterochromatin-like structure. Our data shed light on the molecular basis of CD4 regulation and provide a conceptual framework for understanding how the same regulatory elements can mediate both reversible and irreversible CD4 regulation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2007
    In:  Science Vol. 315, No. 5810 ( 2007-01-19), p. 377-381
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 315, No. 5810 ( 2007-01-19), p. 377-381
    Abstract: Antibody class switching in activated B cells uses class switch recombination (CSR), which joins activation-induced cytidine deaminase (AID)–dependent double-strand breaks (DSBs) within two large immunoglobulin heavy chain (IgH) locus switch (S) regions that lie up to 200 kilobases apart. To test postulated roles of S regions and AID in CSR, we generated mutant B cells in which donor Sμ and accepter Sγ1 regions were replaced with yeast I-SceI endonuclease sites. We found that site-specific I-SceI DSBs mediate recombinational IgH locus class switching from IgM to IgG 1 without S regions or AID. We propose that CSR evolved to exploit a general DNA repair process that promotes joining of widely separated DSBs within a chromosome.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2007
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 49 ( 2006-12-05), p. 18739-18744
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 49 ( 2006-12-05), p. 18739-18744
    Abstract: Recent studies have suggested an oncogenic role of the BTB/POZ-domain genes in hematopoietic malignancy. The aim of this study is to identify and characterize BTB/POZ-domain genes in the development of human epithelial cancers, i.e., carcinomas. In this study, we focused on ovarian carcinoma and analyzed gene expression levels using the serial analysis of gene expression (SAGE) data in all 130 deduced BTB/POZ genes. Our analysis reveals that NAC-1 is significantly overexpressed in ovarian serous carcinomas and several other types of carcinomas. Immunohistochemistry studies in ovarian serous carcinomas demonstrate that NAC-1 is localized in discrete nuclear bodies (tentatively named NAC-1 bodies), and the levels of NAC-1 expression correlate with tumor recurrence. Furthermore, intense NAC-1 immunoreactivity in primary tumors predicts early recurrence in ovarian cancer. Both coimmunoprecipitation and double immunofluorescence staining demonstrate that NAC-1 molecules homooligomerize through the BTB/POZ domain. Induced expression of the NAC-1 mutant containing only the BTB/POZ domain disrupts NAC-1 bodies, prevents tumor formation, and promotes tumor cell apoptosis in established tumors in a mouse xenograft model. Overexpression of full-length NAC-1 enhanced tumorigenicity of ovarian surface epithelial cells and NIH 3T3 cells in athymic nu / nu mice. In summary, NAC-1 is a tumor recurrence-associated gene with oncogenic potential, and the interaction between BTB/POZ domains of NAC-1 proteins is critical to form the discrete NAC-1 nuclear bodies and essential for tumor cell proliferation and survival.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 39 ( 2005-09-27), p. 14004-14009
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 39 ( 2005-09-27), p. 14004-14009
    Abstract: A genomewide technology, digital karyotyping, was used to identify subchromosomal alterations in ovarian cancer. Amplification at 11q13.5 was found in three of seven ovarian carcinomas, and amplicon mapping delineated a 1.8-Mb core of amplification that contained 13 genes. FISH analysis demonstrated amplification of this region in 13.2% of high-grade ovarian carcinomas but not in any of low-grade carcinomas or benign ovarian tumors. Combined genetic and transcriptome analyses showed that Rsf-1 (HBXAPalpha) was the only gene that demonstrated consistent overexpression in all of the tumors harboring the 11q13.5 amplification. Patients with Rsf-1 amplification or overexpression had a significantly shorter overall survival than those without. Overexpression of Rsf-1 gene stimulated cell proliferation and transform nonneoplastic cells by conferring serum-independent and anchorage-independent growth. Furthermore, Rsf-1 gene knockdown inhibited cell growth in OVCAR3 cells, which harbor Rsf-1 amplification. Taken together, these findings indicate an important role of Rsf-1 amplification in ovarian cancer.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 25, No. 48 ( 2005-11-30), p. 11107-11116
    Abstract: Transgenic overexpression of NMDA NR2B receptors in forebrain regions increased behavioral responses to persistent inflammatory pain. However, it is not known whether inflammation leads to the upregulation of NR2B receptors in these regions. Here, we show that peripheral inflammation increased the expression of NMDA NR2B receptors and NR2B receptor-mediated synaptic currents in the anterior cingulate cortex (ACC). In freely moving mice, the increase in NR2B receptors after inflammation contributed to enhanced NMDA receptor-mediated responses in the ACC. Inhibition of NR2B receptors in the ACC selectively reduced behavioral sensitization related to inflammation. Our results demonstrate that the upregulation of NR2B receptors in the ACC contributes to behavioral sensitization caused by inflammation.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2005
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...