GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chen, Jun  (21)
  • Biodiversity Research  (21)
  • Linguistics  (21)
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 361, No. 6401 ( 2018-08-03), p. 494-497
    Abstract: Strain engineering has emerged as a powerful tool to enhance the performance of known functional materials. Here we demonstrate a general and practical method to obtain super-tetragonality and giant polarization using interphase strain. We use this method to create an out-of-plane–to–in-plane lattice parameter ratio of 1.238 in epitaxial composite thin films of tetragonal lead titanate (PbTiO 3 ), compared to 1.065 in bulk. These thin films with super-tetragonal structure possess a giant remanent polarization, 236.3 microcoulombs per square centimeter, which is almost twice the value of known ferroelectrics. The super-tetragonal phase is stable up to 725°C, compared to the bulk transition temperature of 490°C. The interphase-strain approach could enhance the physical properties of other functional materials.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 21 ( 2014-05-27), p. 7683-7688
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 21 ( 2014-05-27), p. 7683-7688
    Abstract: Oncogene-induced senescence (OIS) is an initial barrier to tumor development. Reactive oxygen species (ROS) is critical for oncogenic Ras OIS, but the downstream effectors to mediate ROS signaling are still relatively elusive. Senescent cells develop a senescence-associated secretory phenotype (SASP). However, the mechanisms underlying the regulation of the SASP are largely unknown. Here, we identify protein kinase D1 (PKD1) as a downstream effector of ROS signaling to mediate Ras OIS and SASP. PKD1 is activated by oncogenic Ras expression and PKD1 promotes Ras OIS by mediating inflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8) via modulation of NF-κB activity. We demonstrate that ROS-protein kinase Cδ (PKCδ)-PKD1 axis is essential for the establishment and maintenance of IL-6/IL8 induction. In addition, ablation of PKD1 causes the bypass of Ras OIS, and promotes cell transformation and tumorigenesis. Together, these findings uncover a previously unidentified role of ROS-PKCδ-PKD1 pathway in Ras OIS and SASP regulation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2023
    In:  Science Vol. 379, No. 6638 ( 2023-03-24), p. 1218-1224
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6638 ( 2023-03-24), p. 1218-1224
    Abstract: A bismuth samarium oxide thin film on a substrate maintains its ferroelectricity at a thickness of only 1 nanometer.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 9 ( 2015-03-03), p. 2853-2858
    Abstract: Severe traumatic brain injury (TBI) elicits destruction of both gray and white matter, which is exacerbated by secondary proinflammatory responses. Although white matter injury (WMI) is strongly correlated with poor neurological status, the maintenance of white matter integrity is poorly understood, and no current therapies protect both gray and white matter. One candidate approach that may fulfill this role is inhibition of class I/II histone deacetylases (HDACs). Here we demonstrate that the HDAC inhibitor Scriptaid protects white matter up to 35 d after TBI, as shown by reductions in abnormally dephosphorylated neurofilament protein, increases in myelin basic protein, anatomic preservation of myelinated axons, and improved nerve conduction. Furthermore, Scriptaid shifted microglia/macrophage polarization toward the protective M2 phenotype and mitigated inflammation. In primary cocultures of microglia and oligodendrocytes, Scriptaid increased expression of microglial glycogen synthase kinase 3 beta (GSK3β), which phosphorylated and inactivated phosphatase and tensin homologue (PTEN), thereby enhancing phosphatidylinositide 3-kinases (PI3K)/Akt signaling and polarizing microglia toward M2. The increase in GSK3β in microglia and their phenotypic switch to M2 was associated with increased preservation of neighboring oligodendrocytes. These findings are consistent with recent findings that microglial phenotypic switching modulates white matter repair and axonal remyelination and highlight a previously unexplored role for HDAC activity in this process. Furthermore, the functions of GSK3β may be more subtle than previously thought, in that GSK3β can modulate microglial functions via the PTEN/PI3K/Akt signaling pathway and preserve white matter homeostasis. Thus, inhibition of HDACs in microglia is a potential future therapy in TBI and other neurological conditions with white matter destruction.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6640 ( 2023-04-07)
    Abstract: Hormones regulate most aspects of human physiology and are generally divided into four groups: protein and peptides, monoamines, steroids, and free fatty acids (FAs). Unsaturated FAs, those with C–C double bonds, exert physiological functions through engagement with membrane receptors, many of which are G protein–coupled receptors (GPCRs). Omega-3 (ω-3) FAs, which are a main component of fish oil, bind to the receptor GPR120, which mediates insulin sensitization, stimulates glucagon-like peptide 1 (GLP-1) secretion, and controls adipogenesis and anti-inflammatory effects through coupling to distinct downstream effectors, including the guanine nucleotide–binding (G) proteins G s , G i , and G q and β-arrestins. The association of the p.R270H missense mutation of GPR120 in obesity suggests therapeutic potential for GPR120 in the treatment of metabolic diseases. RATIONALE How natural fatty acid hormones—which are amphipathic molecules, distinguished mainly by number and position of double bonds—interact with GPCRs such as GPR120 has been unclear. Both saturated and unsaturated FAs are able to activate GPR120, but only certain unsaturated FAs are beneficial for metabolism. It is therefore important to understand whether GPR120 can recognize selective double-bond decorations in FAs and, if so, translate binding to specific biological signaling pathways, including different G protein subtypes and arrestins. The lack of GPCR structures in complex with natural fatty acid hormones and downstream effectors has hampered our understanding of double-bond recognition, which is one challenge in developing therapeutics that might act through this receptor. RESULTS By profiling G protein and arrestin activities of GPR120 stimulated by saturated and unsaturated endogenous FAs or the synthetic compound TUG891, we found that these molecules exhibited different biased signaling properties. In particular, only the beneficial ω-3 FAs were able to activate G s signaling. We determined six cryo–electron microscopy (cryo-EM) structures of GPR120-G i /G iq with 9-hydroxystearic acid (9-HSA), linoleic acid (LA), oleic acid (OA), the natural agonist ω-3 eicosapentaenoic acid (EPA), and the synthetic agonist TUG891. All fatty acid hormones and TUG891 assumed an overall “L” configuration and were buried inside the seven-transmembrane (7TM) helix bundle of the receptor. Through structural and mutational analysis, biochemical characterization, and molecular simulations, we identified aromatic residues in the ligand pocket of GPR120 that specifically recognize the C–C double bonds present in unsaturated FAs through π:π interactions and translate this recognition into different signaling outcomes. A propagating path connects the double-bond recognition of GPR120 inside the ligand pocket of the cytoplasmic side, and common and distinct features of G s and G q coupling interfaces were investigated. We also analyzed the structural basis for selectivity of TUG891 toward GPR120 and a disease-associated single-nucleotide polymorphism of GPR120. The separation of TUG891 into two regions by a linker oxygen suggests that fragment-based drug design could be exploited for GPR120 ligand design. CONCLUSION Our cryo-EM structures reveal how fatty acid hormones bind the orthosteric site within the 7TM domain of GPCRs and how specific aromatic residues inside the ligand pocket recognize the C–C double bonds. We also investigated mechanisms underlying signaling bias of GPR120 in response to various ligands. This work will serve as a foundation for the development of molecules that bind and activate GPR120 for potential therapeutic uses as well as to better understand how ligand-induced conformational changes bias signaling outcomes in GPRCs. Fish oil membrane receptor GPR120 recognizes different unsaturated FAs and couples to distinct downstream effectors. The membrane receptor GPR120 specifically recognizes the C–C double bonds present in unsaturated FAs, such as those in the ω-3 FAs found in fish oil, through π:π interactions. The interaction patterns of different FAs or ligands inside of the ligand pocket of GPR120 are translated into different signaling outcomes via distinct propagating paths. GLUT4, glucose transporter member 4; cAMP, cyclic adenosine monophosphate; TAK1, transforming growth factor-β–activated kinase 1; NLRP3, NLR family pyrin domain containing 3.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 375, No. 6583 ( 2022-02-25), p. 852-859
    Abstract: Freestanding nanosheet films show interlayer sliding and rotation and can conformally stretch and adapt to soft tissues.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 46 ( 2014-11-18), p. 16337-16342
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 46 ( 2014-11-18), p. 16337-16342
    Abstract: Success of modern agriculture relies heavily on breeding of crops with maximal regional adaptability and yield potentials. A major limiting factor for crop cultivation is their flowering time, which is strongly regulated by day length (photoperiod) and temperature. Here we report identification and characterization of Days to heading 7 ( DTH7 ), a major genetic locus underlying photoperiod sensitivity and grain yield in rice. Map-based cloning reveals that DTH7 encodes a pseudo-response regulator protein and its expression is regulated by photoperiod. We show that in long days DTH7 acts downstream of the photoreceptor phytochrome B to repress the expression of Ehd1 , an up-regulator of the “florigen” genes ( Hd3a and RFT1 ), leading to delayed flowering. Further, we find that haplotype combinations of DTH7 with Grain number, plant height, and heading date 7 ( Ghd7 ) and DTH8 correlate well with the heading date and grain yield of rice under different photoperiod conditions. Our data provide not only a macroscopic view of the genetic control of photoperiod sensitivity in rice but also a foundation for breeding of rice cultivars better adapted to the target environments using rational design.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 28, No. 49 ( 2008-12-03), p. 13038-13055
    Abstract: Heat shock protein 27 (Hsp27), a recently discovered member of the heat shock protein family, is markedly induced in the brain after cerebral ischemia and other injury states. In non-neuronal systems, Hsp27 has potent cell death-suppressing functions. However, the mechanism of Hsp27-mediated neuroprotection has not yet been elucidated. Using transgenic and viral overexpression of Hsp27, we investigated the molecular mechanism by which Hsp27 exerts its neuroprotective effect. Overexpression of Hsp27 conferred long-lasting tissue preservation and neurobehavioral recovery, as measured by infarct volume, sensorimotor function, and cognitive tasks up to 3 weeks following focal cerebral ischemia. Examination of signaling pathways critical to neuronal death demonstrated that Hsp27 overexpression led to the suppression of the MKK4/JNK kinase cascade. While Hsp27 overexpression did not suppress activation of an upstream regulatory kinase of the MKK/JNK cascade, ASK1, Hsp27 effectively inhibited ASK1 activity via a physical association through its N-terminal domain and the kinase domain of ASK1. The N-terminal region of Hsp27 was required for neuroprotective function against in vitro ischemia. Moreover, knockdown of ASK1 or inhibition of the ASK1/MKK4 cascade effectively inhibited cell death following neuronal ischemia. This underscores the importance of this kinase cascade in the progression of ischemic neuronal death. Inhibition of PI3K had no effect on Hsp27-mediated neuroprotection, suggesting that Hsp27 does not promote cell survival via activation of PI3K/Akt. Based on these findings, we conclude that overexpression of Hsp27 confers long-lasting neuroprotection against ischemic brain injury via a previously unexplored association and inhibition of ASK1 kinase signaling.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2008
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 34, No. 5 ( 2014-01-29), p. 1903-1915
    Abstract: Ischemic stroke is a debilitating clinical disorder that affects millions of people, yet lacks effective neuroprotective treatments. Fish oil is known to exert beneficial effects against cerebral ischemia. However, the underlying protective mechanisms are not fully understood. The present study tests the hypothesis that omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate ischemic neuronal injury by activating nuclear factor E2-related factor 2 (Nrf2) and upregulating heme oxygenase-1 (HO-1) in both in vitro and in vivo models. We observed that pretreatment of rat primary neurons with docosahexaenoic acid (DHA) significantly reduced neuronal death following oxygen-glucose deprivation. This protection was associated with increased Nrf2 activation and HO-1 upregulation. Inhibition of HO-1 activity with tin protoporphyrin IX attenuated the protective effects of DHA. Further studies showed that 4-hydroxy-2E-hexenal (4-HHE), an end-product of peroxidation of n-3 PUFAs, was a more potent Nrf2 inducer than 4-hydroxy-2E-nonenal derived from n-6 PUFAs. In an in vivo setting, transgenic mice overexpressing fatty acid metabolism-1, an enzyme that converts n-6 PUFAs to n-3 PUFAs, were remarkably resistant to focal cerebral ischemia compared with their wild-type littermates. Regular mice fed with a fish oil-enhanced diet also demonstrated significant resistance to ischemia compared with mice fed with a regular diet. As expected, the protection was associated with HO-1 upregulation, Nrf2 activation, and 4-HHE generation. Together, our data demonstrate that n-3 PUFAs are highly effective in protecting the brain, and that the protective mechanisms involve Nrf2 activation and HO-1 upregulation by 4-HHE. Further investigation of n-3 PUFA neuroprotective mechanisms may accelerate the development of stroke therapies.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2014
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 21 ( 2021-05-25)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 21 ( 2021-05-25)
    Abstract: Fly ash—the residuum of coal burning—contains a considerable amount of fossilized particulate organic carbon (FOC ash ) that remains after high-temperature combustion. Fly ash leaks into natural environments and participates in the contemporary carbon cycle, but its reactivity and flux remained poorly understood. We characterized FOC ash in the Chang Jiang (Yangtze River) basin, China, and quantified the riverine FOC ash fluxes. Using Raman spectral analysis, ramped pyrolysis oxidation, and chemical oxidation, we found that FOC ash is highly recalcitrant and unreactive, whereas shale-derived FOC (FOC rock ) was much more labile and easily oxidized. By combining mass balance calculations and other estimates of fly ash input to rivers, we estimated that the flux of FOC ash carried by the Chang Jiang was 0.21 to 0.42 Mt C⋅y −1 in 2007 to 2008—an amount equivalent to 37 to 72% of the total riverine FOC export. We attributed such high flux to the combination of increasing coal combustion that enhances FOC ash production and the massive construction of dams in the basin that reduces the flux of FOC rock eroded from upstream mountainous areas. Using global ash data, a first-order estimate suggests that FOC ash makes up to 16% of the present-day global riverine FOC flux to the oceans. This reflects a substantial impact of anthropogenic activities on the fluxes and burial of fossil organic carbon that has been made less reactive than the rocks from which it was derived.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...