GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (7)
  • Biodiversity Research  (7)
  • Linguistics  (7)
  • 1
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 31, No. 38 ( 2011-09-21), p. 13376-13385
    Abstract: In peripheral nerve injury, Schwann cells (SCs) must survive to exert a continuing and essential role in successful nerve regeneration. Herein, we show that peripheral nerve injury is associated with activation of endoplasmic reticulum (ER) stress and the adaptive unfolded protein response (UPR). The UPR culminates in expression of C/EBP homology protein (CHOP), a proapoptotic transcription factor in SCs, unless counteracted by LDL receptor-related protein-1 (LRP1), which serves as a major activator of phosphatidylinositol 3-kinase (PI3K). Sciatic nerve crush injury in rats induced expression of the ER chaperone GRP78/BIP, reflecting an early, corrective phase of the UPR. However, when LRP1 signaling was inhibited with receptor-associated protein, PI3K activity was decreased and CHOP protein expression increased, particularly in myelinating SCs. In cultured SCs, the PKR-like ER kinase target eIF2α was phosphorylated and CHOP was induced by (1) inhibiting PI3K, (2) treating the cells with tumor necrosis factor-α (TNF-α), or (3) genetic silencing of LRP1. CHOP gene deletion in SCs decreased cell death in response to TNF-α. Furthermore, the effects of TNF-α on phosphorylated eIF2α, CHOP, and SC death were blocked by adding LRP1 ligands that augment LRP1-dependent cell signaling to PI3K. Collectively, our results support a model in which UPR-activated signaling pathways represent a major challenge to SC survival in nerve injury. LRP1 functions as a potent activator of PI3K in SCs and, by this mechanism, limits SC apoptosis resulting from increased CHOP expression in nerve injury.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2011
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 33, No. 13 ( 2013-03-27), p. 5590-5602
    Abstract: Trophic support and myelination of axons by Schwann cells in the PNS are essential for normal nerve function. Herein, we show that deletion of the LDL receptor-related protein-1 (LRP1) gene in Schwann cells (scLRP1 −/− ) induces abnormalities in axon myelination and in ensheathment of axons by nonmyelinating Schwann cells in Remak bundles. These anatomical changes in the PNS were associated with mechanical allodynia, even in the absence of nerve injury. In response to crush injury, sciatic nerves in scLRP1 −/− mice showed accelerated degeneration and Schwann cell death. Remyelinated axons were evident 20 d after crush injury in control mice, yet were largely absent in scLRP1 −/− mice. In the partial nerve ligation model, scLRP1 −/− mice demonstrated significantly increased and sustained mechanical allodynia and loss of motor function. Evidence for central sensitization in pain processing included increased p38MAPK activation and activation of microglia in the spinal cord. These studies identify LRP1 as an essential mediator of normal Schwann cell–axonal interactions and as a pivotal regulator of the Schwann cell response to PNS injury in vivo . Mice in which LRP1 is deficient in Schwann cells represent a model for studying how abnormalities in Schwann cell physiology may facilitate and sustain chronic pain.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2013
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 11 ( 2012-03-13), p. 4281-4284
    Abstract: How does one deal with unfair behaviors? This subject has long been investigated by various disciplines including philosophy, psychology, economics, and biology. However, our reactions to unfairness differ from one individual to another. Experimental economics studies using the ultimatum game (UG), in which players must decide whether to accept or reject fair or unfair offers, have also shown that there are substantial individual differences in reaction to unfairness. However, little is known about psychological as well as neurobiological mechanisms of this observation. We combined a molecular imaging technique, an economics game, and a personality inventory to elucidate the neurobiological mechanism of heterogeneous reactions to unfairness. Contrary to the common belief that aggressive personalities (impulsivity or hostility) are related to the high rejection rate of unfair offers in UG, we found that individuals with apparently peaceful personalities (straightforwardness and trust) rejected more often and were engaged in personally costly forms of retaliation. Furthermore, individuals with a low level of serotonin transporters in the dorsal raphe nucleus (DRN) are honest and trustful, and thus cannot tolerate unfairness, being candid in expressing their frustrations. In other words, higher central serotonin transmission might allow us to behave adroitly and opportunistically, being good at playing games while pursuing self-interest. We provide unique neurobiological evidence to account for individual differences of reaction to unfairness.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 30, No. 49 ( 2010-12-08), p. 16567-16572
    Abstract: Misestimating risk could lead to disadvantaged choices such as initiation of drug use (or gambling) and transition to regular drug use (or gambling). Although the normative theory in decision-making under risks assumes that people typically take the probability-weighted expectation over possible utilities, experimental studies of choices among risks suggest that outcome probabilities are transformed nonlinearly into subjective decision weights by a nonlinear weighting function that overweights low probabilities and underweights high probabilities. Recent studies have revealed the neurocognitive mechanism of decision-making under risk. However, the role of modulatory neurotransmission in this process remains unclear. Using positron emission tomography, we directly investigated whether dopamine D 1 and D 2 receptors in the brain are associated with transformation of probabilities into decision weights in healthy volunteers. The binding of striatal D 1 receptors is negatively correlated with the degree of nonlinearity of weighting function. Individuals with lower striatal D 1 receptor density showed more pronounced overestimation of low probabilities and underestimation of high probabilities. This finding should contribute to a better understanding of the molecular mechanism of risky choice, and extreme or impaired decision-making observed in drug and gambling addiction.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2010
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 28, No. 45 ( 2008-11-05), p. 11571-11582
    Abstract: Low-density lipoprotein receptor-related protein (LRP-1) is an endocytic receptor for diverse proteins, including matrix metalloproteinase-9 (MMP-9), and a cell-signaling receptor. In the peripheral nervous system (PNS), LRP-1 is robustly expressed by Schwann cells only after injury. Herein, we demonstrate that MMP-9 activates extracellular-signal-regulated kinase (ERK1/2) and Akt in Schwann cells in culture. MMP-9 also promotes Schwann cell migration. These activities require LRP-1. MMP-9-induced cell signaling and migration were blocked by inhibiting MMP-9-binding to LRP-1 with receptor-associated protein (RAP) or by LRP-1 gene silencing. The effects of MMP-9 on Schwann cell migration also were inhibited by blocking the cell-signaling response. An antibody targeting the hemopexin domain of MMP-9, which mediates the interaction with LRP-1, blocked MMP-9-induced cell signaling and migration. Furthermore, a novel glutathione- S -transferase fusion protein (MMP-9-PEX), which includes only the hemopexin domain of MMP-9, replicated the activities of intact MMP-9, activating Schwann cell signaling and migration by an LRP-1-dependent pathway. Constitutively active MEK1 promoted Schwann cell migration; in these cells, MMP-9-PEX had no further effect, indicating that ERK1/2 activation is sufficient to explain the effects of MMP-9-PEX on Schwann cell migration. Injection of MMP-9-PEX into sciatic nerves, 24 h after crush injury, robustly increased phosphorylation of ERK1/2 and Akt. This response was inhibited by RAP. MMP-9-PEX failed to activate cell signaling in uninjured nerves, consistent with the observation that Schwann cells express LRP-1 at significant levels only after nerve injury. These results establish LRP-1 as a cell-signaling receptor for MMP-9, which may be significant in regulating Schwann cell migration and physiology in PNS injury.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2008
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 33 ( 2022-08-16)
    Abstract: The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection–triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1–expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)–containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 26 ( 2012-06-26)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 26 ( 2012-06-26)
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...