GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Can, Pham Ngoc  (1)
  • Asia - CrossAsia  (1)
  • 1
    Online Resource
    Online Resource
    Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications) ; 2020
    In:  VIETNAM JOURNAL OF EARTH SCIENCES Vol. 42, No. 1 ( 2020-01-15), p. 80-92
    In: VIETNAM JOURNAL OF EARTH SCIENCES, Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications), Vol. 42, No. 1 ( 2020-01-15), p. 80-92
    Abstract: In this paper, the mineralogical and geochemical characteristics of amphiboles and plagioclases of granitoids from the Nam Rom and Song Ma massifs have been investigated to understand their formation conditions. The Nam Rom amphibole and plagioclase are subhedral to euhedral fine- to medium-grained crystals. Whereas, the Song Ma amphibole and plagioclase are anhedral to subhedral fine-grained crystals. Geochemical compositions of amphiboles suggest that Nam Rom and Song Ma amphiboles are edenite and ferro-edenite, respectively. Nam Rom edenite has higher contents of basic constituents (Mg and Ca) and lower contents of felsic constituents (Na and K) compared with the Song Ma ferro-edenite. On the other hand, Si-(Na+K) and Si-Ca apfu ratios of the Nam Rom edenite and the Song Ma ferro-edenite and Al/(Na+K)-Al/(Ca+Na+K) atom per formula unit (apfu) ratios of the Nam Rom edenite and andesine and the Song Ma ferro-edenite, andesine and oligoclase are similar. Formation conditions of the Nam Rom and Song Ma granitoids were calculated using amphibole-plagioclase geobarometer. The Nam Rom granitoid was formed at 3.07-5.32 kbar (10.1-17.6 km under paleo-surface) and 750-785°C. The Song Ma granitoid was formed at 1.04-3.08 kbar (3.4-10.2 km under paleo-surface) and 715-745°C. Therefore, Nam Rom and Song Ma granitoids are thought to be crystallized from the same magma. The former was formed from the immature and more basic stage of magma; the latter was formed from the mature and more felsic stage of magma.
    Type of Medium: Online Resource
    ISSN: 0866-7187 , 0866-7187
    Language: Unknown
    Publisher: Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)
    Publication Date: 2020
    SSG: 6,25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...