GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bao, Ying  (1)
  • Wang, Lei  (1)
  • Asia - CrossAsia  (1)
  • Biodiversity Research  (1)
Material
Publisher
Person/Organisation
Language
Years
FID
  • Asia - CrossAsia  (1)
  • Biodiversity Research  (1)
  • 1
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  Journal of Systematics and Evolution Vol. 59, No. 2 ( 2021-03), p. 316-325
    In: Journal of Systematics and Evolution, Wiley, Vol. 59, No. 2 ( 2021-03), p. 316-325
    Abstract: Conspecific weeds that permanently infest worldwide agroecosystems are evolved from their crop species. These weeds cause substantial problems for crop production by competing for resources in agricultural fields. Weedy rice represents such a conspecific weed infesting rice ecosystems, and causing tremendous rice yield losses owing to its strong competitiveness and abundant genetic diversity, likely resulted from its complex origins. Here, we report the use of chloroplast DNA (cpDNA) fingerprints to determine whether weedy rice is evolved from its wild (exo‐feral) or cultivated (endo‐feral) rice progenitor as the maternal donor in recent hybridization events. In addition, we also applied nuclear simple sequence repeat (SSR) markers to confirm the exo‐feral or endo‐feral origins of weedy rice accessions determined by the cpDNA fingerprints. We found that the studied weedy rice accessions evolved either from their wild or cultivated rice progenitor, as the maternal donor, based on the cpDNA network and structure analyses. Combined analyses of cpDNA and nuclear SSR markers indicated that a much greater proportion of weedy rice accessions had the endo‐feral origin. In addition, results from the genetic structure of nuclear SSR markers indicated that weedy rice accessions from the endo‐feral pathway are distinctly associated with either indica or japonica rice cultivars, suggesting their complex origins through crop–weed introgression. The complex pathways of origin and evolution could greatly promote genetic diversity of weedy rice. Therefore, innovative methods should be developed for effective weedy rice control.
    Type of Medium: Online Resource
    ISSN: 1674-4918 , 1759-6831
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2516638-4
    SSG: 6,25
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...