GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (2)
  • 2020-2024  (2)
  • 2010-2014
  • 1975-1979
  • 1955-1959
  • 540.71  (2)
Document type
  • GEOMAR Catalogue / E-Books  (2)
Source
Language
Years
  • 2020-2024  (2)
  • 2010-2014
  • 1975-1979
  • 1955-1959
Year
DDC
  • 1
    Online Resource
    Online Resource
    New York :Nova Science Publishers, Incorporated,
    Keywords: Chemistry-Research. ; Chemistry. ; Chemistry-Study and teaching. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (326 pages)
    Edition: 1st ed.
    ISBN: 9798891131118
    Series Statement: Advances in Chemistry Research Series
    DDC: 540.71
    Language: English
    Note: Intro -- Contents -- Preface -- Chapter 1 -- Uranium Dioxide Powder Synthesis, Pressing and Sintering: A Review -- Abstract -- Introduction -- Section 1: Powder Characterization -- 1.1. Sieve Analysis -- 1.2. BET Specific Surface Area -- 1.3. Average Particle Size -- 1.4. A Product and a Ratio -- 1.5. Particle Size Distribution -- 1.6. Dilatometry -- 1.7. Scanning Electron Microscopy -- Section 2: Powder Synthesis -- 2.1. Powder Flowability, Formability and Sinterability -- 2.2. Crystallization and Precipitation -- 2.3. Types of Precipitates -- 2.4. Precipitation of Ammonium Diuranate (ADU) -- 2.5. Decomposition of ADU and Calcination -- 2.6. Soft and Hard Powders -- Section 3: Powder Conditioning -- 3.1. Stabilization of UO2 Powder -- 3.2. Parameters for Flow Properties of Bulk Solids -- 3.3. Powder Milling -- 3.4. Granulation -- 3.5. Binders and Lubricants -- Section 4. Pressing -- 4.1. UO2 Powder to Pellet -- 4.2. The Significance of Green Density in Sintering -- 4.3. Porosity in the Green Compact -- 4.4. Density Gradients in a Green Pellet -- 4.5. Estimating Die Bore Diameter -- Section 5: Sintering -- 5.1. Driving Force for Sintering -- 5.2. Effect of Calcination/Reduction Temperature of Powder on Sintering -- 5.3. Green Density, Temperature, and Sintered Density -- 5.4. Porosity Effects -- 5.5. Pore Shape, Size, and Stability -- 5.6. Densification and Coarsening -- 5.7. Furnace Gas Flow Effects -- Section 6. Grain Growth and Pore Stability in Sintering -- 6.1. Driving Force for Grain Growth -- 6.2. Pore Growth Caused by Grain Growth -- 6.3. Pore Stability versus Dihedral Angle and Grain Coordination Number -- 6.4. Grain Growth in Uranium Dioxide -- Section 7: Non-Stoichiometry and Point Defect Chemistry -- 7.1. Non-Stoichiometry in UO2 -- 7.2. Mass Transport in Sintering -- 7.3. Kroger-Vink Notation for Point Defects (Kofstad, 1972). , 7.4. Effect of Atmosphere on UO2 Defect Structure -- 7.5. Effect of Additive/Impurity on UO2 Defect Structure -- 7.6. Defect Clustering in UO2 -- Section 8: Defects in Pellets - Agglomerate Effects -- 8.1. Grain, Particle, Granule and Agglomerate -- 8.2. Effect of Agglomerates on Sintered Density -- 8.3. Effects of Physical Inhomogeneity in Green Bodies -- 8.4. Pores Caused by Agglomerates and Agglomerated Additives -- 8.5. Caking as a Source of Agglomerates in Powder -- 8.6. Classification of Defects Based on Size -- Section 9: Defects in UO2 Pellets - Capping, Cracking, and Unground Surface -- 9.1. Capping, Lamination due to Air Entrapment -- 9.2. Stresses in a Compact -- 9.3. Lamination due to Insufficient Exit die Taper -- 9.4. End Capping during Decompression -- 9.5. Unground Patches -- 9.6. Other Defects -- Section 10: Summary -- Disclaimer -- Acknowledgments -- References -- Chapter 2 -- The Role of Catalysts' Bifunctionality in a Multistage Process -- Abstract -- Introduction -- Bifunctional Catalysts in Oxidation-Reduction Processes with Participation of "Small Molecules" -- Reduction of Nitrogen Oxides (NOx) with Hydrocarbons -- Catalytic Conversion of Nitrous Oxide, N2O -- Partial Oxidation of C3-C4 Alkanes -- Selective Oxidation of Ethylene: С2Н4 + N2O → С2Н4О + N2 -- Deep Methane Oxidation -- СО2 (Dry)-Reforming of Methane -- Bifunctionality of Catalysts in Tandem Processes of (Bio)Ethanol Conversion -- Bifunctionality of Complex Oxide Catalysts for 1,3-Butadiene Production from Ethanol -- "Bifunctionality" of Solid-Phase Catalysts in Guerbet Condensation of C2, C4 Alcohols -- Mg-Al-Oxide Systems -- Hydroxyapatite -- Bifunctional Metal-Zeolite Catalysts of the BEA Structure in Current Processes -- Zeolites Ag/BEA in the Selective Catalytic Reduction of NO by Ethanol. , Modification BEA Zeolites for the Production of 1,3-Butadiene from Ethanol -- Zn, Ga (Ta, Nb)-BEA Catalysts in CO2-Assisted Propane Dehydrogenation Process -- Conclusion -- References -- Chapter 3 -- The Design of Efficient Bifunctional Catalysts for the Successful Application of Tandem Catalysis in One-Pot Processes -- Abstract -- Role of Catalysis on the Sustainability of Chemical Synthesis and Industry -- Relevance and Classification of One-Pot Processes -- Bifunctional Catalysts as Key Tools for Tandem Catalysis -- Design of Bifunctional Solid Materials for Tandem Catalysis in One-Pot Processes -- Application of Different Approaches for Designing a Bifunctional Catalytic System: The Case of the Production of Pentyl Valerate Biofuel from (-Valerolactone -- Disclaimer -- References -- Chapter 4 -- Organic Materials for Energy Storage in Lithium Batteries -- Abstract -- 1. Introduction -- 2. Conventional Inorganic Electrode Materials -- 2.1. Cathode Materials -- 2.1.1. Lithium Cobalt Oxide (LCO) -- 2.1.2. Nickel-Based Layered Materials (LNO, Ni-rich NCM, or NCA) -- 2.1.3 .LiFePO4 (LFP) -- 2.1.4. LiMn2O4 (LMO) -- 2.2. Anode Materials -- 2.2.1. Graphite -- 2.2.2. Li-Metal -- 2.2.3. Si-Based Materials -- 2.3. Disadvantages of Inorganic Electrode Materials -- 3. Organic Electrode Materials and Their History -- 3.1. Classification of OEMs -- 3.1.1. Redox Mechanism of OEMs -- 3.1.1.1. P-type OEMs -- 3.1.1.2. N-type OEMs -- 3.1.1.3. Bipolar OEMs -- 3.1.2. Redox Centers of OEMs -- 3.1.2.1. Carbonyl (C = O) -- 3.1.2.2. Sulfur (R - S - R') -- 3.1.2.3. Nitrogen (R - N - R') -- 3.1.2.4. Overlithiation (C = C) -- 3.1.2.5. Conducting Polymers -- 3.1.2.6. Radicals -- 3.2. Advantages of OEMs -- 3.2.1. Abundant in Nature -- 3.2.2. Environmentally Friendly -- 3.2.3. Structural Tunablility -- 3.2.4. Flexible Molecular Structure. , 3.2.5. Feasible to Match with Diverse Ions -- 3.3. Challenges of OEMs -- 3.4. Strategies for Addressing the Limitations of OEMs -- 3.4.1. Electronic Conductivity -- 3.4.1.1. Strong Aromaticity -- 3.4.1.2. Polymerization -- 3.4.2. Specific Capacity -- 3.4.2.1. Increasing Li Reaction Sites -- 3.4.2.2. Reducing the Molecular Weight -- 3.4.3. Operating Voltage -- 3.4.3.1. Introducing heteroatoms -- 3.4.4. Dissolution in Electrolyte -- 3.4.4.1. Polymerization -- 3.4.4.2. Solid Electrolyte (SE) System -- Conclusion -- Disclaimer -- Acknowledgment -- References -- Chapter 5 -- Chalcone: A Versatile Tool of Medicinal and Synthetic Organic Chemistry -- Abstract -- Introduction -- Synthesis of Chalcones -- Biosynthesis of Chalcones -- Chemical Synthesis of Chalcones -- Claisen-Schmidt Condensation Reaction -- Friedel-Craft Acylation Reaction -- Photo-Fries Rearrangement Reaction -- Cross-Coupling Reaction -- Suzuki-Miyaura Coupling Reaction -- Carbonylative Heck Coupling Reaction -- Sonogashira Isomerization Coupling Reaction -- The Solid Acid-Catalyzed Coupling Reaction -- Wittig Olefination for Chalcone Synthesis -- Julia−Kocienski Olefination -- Modern Method of Coupling Reaction for Chalcone Synthesis -- One Pot Synthesis of Chalcones -- Properties of Chalcones -- Fluorescent Properties of Chalcones -- Spectral Properties -- Application of Chalcones -- Medicinal Applications -- Chalcones as Antioxidant -- Chemo-Preventive Chalcones -- Anti-Inflammatory Property of Chalcones -- Anti-Cancer Activity -- Anti-Microbial Activity -- Anti-Diabetic Activity of Chalcones -- Cytotoxicity of Chalcones -- Antiviral Activity of Chalcones -- Anti-Tuberculosis Activity of Chalcones -- Anti-Ulcer Activity of Chalcones -- Application in Organic Synthesis -- Flavone Synthesis -- Seven-Membered Diazepine Synthesis -- Six-Membered Heterocycles Synthesis from Chalcones. , Five-Membered Heterocycles Synthesis -- Epoxidation of Chalcones -- Conclusion -- References -- Chapter 6 -- Quinol Ethers of Para-Benzoquinone Dioxime -- Abstract -- Introduction -- Quinol Ethers of Para-Benzoquinone Dioxime as Vulcanizing Agents for Unsaturated Rubbers -- Investigation of Mono-Nitrosoarenes as Accelerators for the Vulcanization of Unsaturated Rubbers with Quinol Ether EQ-1 -- Development of a Method for Obtaining Quinol Ether EQ-1 Using Calcium Hypochlorite as an Oxidant -- Method for Obtaining Quiol Ether EQ-10 by Reacting 2,4,6-Tri-Tert-Butylphenol with 2-Methyl-5-Isopropyl-p-dinitrosobenzene -- The Development of a New Pliable Arts& -- Crafts Material - The Plasticine, that Turns Rubber, a.k.a. Klyuchnikovs Rubber Plasticine -- Conclusion -- References -- Biographical Sketches -- Chapter 7 -- Citric Acid Applications in the Textile Chemical Processing Industry -- Abstract -- 1. Introduction -- 1.1. Citric Acid in Silk Degumming -- 1.2. Citric Acid in Dyeing -- 1.3. Citric Acid in Flame Retardant Finishing in Textiles -- 1.4. Citric Acid in Self Cleaning Finishing in Textiles -- 1.5. Citric Acid in Antimicrobial Finishing of Textiles -- 1.6. Citric Acid in Multi Functional Finishing of Textiles -- 1.7. Citric Acid in Crease Resistance Finishing of Textiles -- 2. Experimental Details -- 2.1. Materials Used -- 2.2. Finishing Method -- 2.3. Characterization Methods -- 3. Results and Discussion -- Conclusion -- Acknowledgment -- References -- Chapter 8 -- Aluminium Silicate-Assisted Synthesis of Sulfonyl Hydrazides in the Absence of Solvent -- Abstract -- 1. Introduction -- 2. Experimental Section -- General Experimental Information -- General Procedure for Synthesis of Sulfonyl Hydrazides -- 3. Results and Discussion -- Conclusion -- References -- Contents of Earlier Volumes -- Index -- Blank Page -- Blank Page.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    New York :Nova Science Publishers, Incorporated,
    Keywords: Chemistry-Research. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (290 pages)
    Edition: 1st ed.
    ISBN: 9781685072094
    Series Statement: Advances in Chemistry Research Series
    DDC: 540.71
    Language: English
    Note: Intro -- Contents -- Preface -- Chapter 1 -- Understanding Polymer Electrolytes -- Abstract -- 1. Introduction -- 2. Classification of Polymer Electrolytes -- 2.1. Based on Physical State and Composition -- 2.1.1. Solid Polymer Electrolyte (SPE) -- 2.1.2. Gel Polymer Electrolyte (GPE) -- 2.1.3. Composite Polymer Electrolyte (CPE) -- 2.1.4. Ion-Conducting Polyelectrolytes -- 2.2. Based on Polymer Sources -- 2.2.1. Natural Polymer Electrolytes -- 2.2.1.1. Chitosan -- 2.2.1.2. Starch and Cellulose -- 2.2.1.3. Cellulose Derivatives -- 2.2.1.4. Other Polymers -- 2.2.2. Synthetic Polymer Electrolytes -- 2.2.2.1. Poly(Ethylene Oxide) (PEO) -- 2.2.2.2. Poly(Vinylidene Fluoride) -- 2.2.2.3. Poly(Vinylidene Fluoride-Hexafluoropropylene) (P(VDF-HFP)) -- 2.2.2.4. Poly(Methyl Methacrylate) -- 2.2.2.5. Poly(Vinyl Chloride) (PVC) -- 2.2.2.6. Poly(Vinyl Alcohol) (PVA) -- 2.2.2.7. Poly(Acrylonitrile) -- 2.2.2.8. Thermoplastic Polyurethane (TPU) -- 3. Membrane Preparation Techniques -- 3.1. Preparation of Dense Membranes -- 3.2. Preparation of Porous Membranes -- 3.2.1. Non-Solvent Induced Phase Separation -- 3.2.2. Thermally Induced Phase Separation -- 3.2.3. Vapor-Induced Phase Separation -- 3.2.4. Electrospinning -- 4. Mechanisms of Ion Transport in Polymer Electrolytes -- 5. Approaches to Improve Polymer Electrolytes Performance -- 5.1. Polymer Blends -- 5.2. Copolymers -- 5.3. Crosslinked Polymer Electrolytes -- 5.4. Nanocomposites -- 6. Characterization Techniques -- 6.1. Ionic Conductivity -- 6.2. Cyclic Voltammetry -- 6.3. Interfacial Compatibility -- 6.4. Electrochemical Stability -- 6.5. Fourier-Transform Infrared Spectroscopy (FTIR) -- 6.6. X-Ray Diffraction -- 6.7. Thermal Characterizations -- 6.8. Microscopic Analysis -- 6.8.1. Scanning Electron Microscopy (SEM) -- 6.8.2. Transmission Electron Microscopy (TEM). , 7. Applications of Polymer Electrolytes -- 7.1. Batteries -- 7.1.1. Solid Polymer Electrolyte Used in Li-Ion Batteries -- 7.1.1.1. Mechanism of Lithium-Ion Conducting in SPEs -- 7.1.2. Gel Polymer Electrolytes Used in Lithium-Ion Batteries -- 7.1.3. Composite Polymer Electrolytes Used in Lithium-Ion Batteries -- 7.2. Fuel Cells -- 7.3. Chlor-Alkali Industries -- 7.4. Supercapacitors -- 7.4.1. Solid Polymer Electrolytes -- 7.4.2. Gel Polymer Electrolytes -- 7.4.3. Composite Polymer Electrolytes -- 7.5. Electrochromic Devices -- 7.5.1. Polymer Electrolytes Used for ECDs -- 7.5.2. Polymer Electrolyte: New Types -- 7.5.3. Conjugated Polymer-Based Hybrid EC Materials -- 7.5.3.1. Conjugated Polymer-Based Hybrid EC Nanocomposites -- 7.5.3.2. Interfacial Chemical Bonds-based Hybrid EC Nanocomposites -- 7.6. Sensors and Actuators -- 7.6.1. Piezoionic-Powered Graphene Strain Sensor -- 7.6.2. Miniaturized and Disposable Electrochemical Sensor -- 7.6.3. Polymer Electrolyte Actuators for Medical Applications -- 7.7. Dye-Sensitized Solar Cells (DSSCs) -- Conclusion -- References -- Chapter 2 -- Advances in Physicochemical Techniques to Distinguish Fullerene C60 Regioisomeric Multiadducts -- Abstract -- Introduction -- Structure Elucidation of Fullerene C60 Bis-Cycloadducts -- Tris-Functionalized Fullerene C60 Cycloadducts -- Other Multi-Cycloadducts of Fullerene C60 -- Conclusion -- Acknowledgments -- References -- Chapter 3 -- Electrochemical Sensors for Identification of Types of Diabetes -- Abstract -- 1. Introduction -- 1.1. Diabetes -- 1.1.1. Synthesis of Insulin -- 1.1.2. Structure of Insulin -- 1.1.3. Secretion of Insulin -- 1.1.4. Diabetes Management -- 1.2. Biosensor -- 1.2.1. Affinity-Based Sensors -- 1.2.1.1. Structure of Antibody -- 1.2.1.2. Production of Antibodies -- 1.2.1.3. Immunoassay -- 1.2.1.4. Formats of Immunoassay -- 2. Methods. , 2.1. Electrochemical Detection Techniques -- 2.2. Voltammetry -- 2.2.1. Cyclic Voltammetry -- 2.2.2. Square Wave Voltammetry -- 2.2.3. Electrochemical Impedance Spectroscopy -- 3. Electrochemical Insulin Sensors -- Conclusion and Future Outlook -- References -- Chapter 4 -- Contemporary Applications of Computational Modeling Approaches in Analysis of Antimicrobial Compounds of Potential Biomedical Significance -- Abstract -- Introduction -- Biologically Active Molecules Recently in the Spotlight -- The Recent Implementations of Molecular Docking and QSAR Methods in Analysis of Biologically Active Compounds -- Software for Computational Modeling of Biologically Active Compounds -- Conclusion -- Acknowledgments -- References -- Chapter 5 -- Recent Updates on Some Synthetic Metal-Porphyrin Complexes and their Catalytic Properties -- Abstract -- Introduction -- Manganese Porphyrins and Applications -- Cobalt Porphyrins and Applications -- Vanadium Porphyrins and Applications -- Chromium Porphyrins -- Conclusion -- Acknowledgments -- References -- Contents of Earlier Volumes -- Index -- Blank Page -- Blank Page.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...