GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (1)
  • 526.1  (1)
Document type
  • GEOMAR Catalogue / E-Books  (1)
Source
Language
Years
DDC
  • 1
    Keywords: Geography. ; Electronic books.
    Description / Table of Contents: This book features real data analysis of gravity and magnetic field satellite missions and technical requirements for future missions. It presents the latest insights of the gravity and magnetic field satellite missions CHAMP, GRACE, GOCE, LOTSE.
    Type of Medium: Online Resource
    Pages: 1 online resource (225 pages)
    Edition: 1st ed.
    ISBN: 9783642321351
    Series Statement: Advanced Technologies in Earth Sciences Series
    DDC: 526.1
    Language: English
    Note: Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Part I LOTSE-CHAMP/GRACE -- 1 LOTSE-CHAMP/GRACE: An Interdisciplinary Research Project for Earth Observation from Space -- 1.1 Motivation -- 1.2 Organization of the Project -- 1.3 Major Results -- 1.4 Outlook -- 2 Improvement in GPS Orbit Determination at GFZ -- 2.1 Reference Processing -- 2.2 Improvements of the Processing -- 2.2.1 Phase Wind-Up and the GPS Attitude Model -- 2.2.2 Improved Ambiguity Fixing -- 2.2.3 Absolute Antenna Phase Centre Offset/Variation -- 2.2.4 No-Net Translation/Rotation/Scale Conditions -- 2.2.5 Change of the Observations Weight, Frame Transformations and Applications of Higher Order Ionospheric Corrections -- 2.2.6 Solar Radiation Pressure Model Reparameterization -- 2.2.7 Summary of the Modelling Improvements -- 2.3 Influence of Single Modelling Components on RL05 Orbits -- 2.4 Summary -- References -- 3 Using Accelerometer Data as Observations -- 3.1 Introduction -- 3.2 Test of the Alternative Method in a Simulated Environment -- 3.3 Test of the Alternative Method with Real-World CHAMP Data -- 3.4 GRACE Scenario with Real Data -- 3.5 Conclusions -- References -- 4 GFZ RL05: An Improved Time-Series of Monthly GRACE Gravity Field Solutions -- 4.1 Introduction -- 4.2 Changes in Observation Models -- 4.2.1 GPS Data -- 4.2.2 K-Band Data -- 4.2.3 Accelerometer Data -- 4.3 Changes in Background Models -- 4.3.1 Time-Variable Gravity Field Model -- 4.3.2 Ocean Tide Model -- 4.3.3 De-Aliasing Model -- 4.4 Processing Environment and Standards -- 4.5 Results -- 4.6 Summary -- References -- 5 GRACE Gravity Modeling Using the Integrated Approach -- 5.1 Introduction -- 5.2 Specifications -- 5.3 Processing and Results -- 5.4 Discussion -- References -- 6 Comparison of Daily GRACE Solutions to GPS Station Height Movements. , 6.1 Introduction: The GRACE Kalman Filter Approach -- 6.2 Validation of Daily Solutions -- 6.3 Conclusions and Outlook -- References -- 7 Identification and Reduction of Satellite-Induced Signals in GRACE Accelerometer Data -- 7.1 Introduction -- 7.2 Magnetic Torquer Spikes -- 7.3 Heater Spikes -- 7.4 Twangs -- 7.5 Impact onto the Gravity Field -- 7.6 Conclusions and Outlook -- References -- 8 Reprocessing and Application of GPS Radio Occultation Data from CHAMP and GRACE -- 8.1 Introduction -- 8.2 Improvement of GPS RO Data Analysis and Reprocessing -- 8.3 Global Temperature and Tropopause Trends -- 8.4 Ionospheric Irregularities in the E-Region -- 8.5 Summary and Outlook -- References -- Part II REAL GOCE -- 9 Real Data Analysis GOCE (REAL GOCE): A Retrospective Overview -- 9.1 Introduction -- 9.2 Contributions -- References -- 10 GOCE Gravity Gradients: Reprocessed Gradients and Spherical Harmonic Analyses -- 10.1 Introduction -- 10.2 Upgrades of Level 1b Processing Methods -- 10.3 Semi-Analytic Gravity Field Analysis -- 10.4 Spectral Analysis of GOCE Gravity Models -- 10.5 Discussion and Conclusions -- References -- 11 GOCE Gravity Gradients: Combination with GRACE and Satellite Altimetry -- 11.1 Introduction -- 11.2 Rotation of the Gravity Gradient Tensor -- 11.3 Validation of Gravity Gradients -- 11.3.1 Direct Comparison of Gravity Gradients and Satellite Altimetry -- 11.3.2 Combination of Gravity Gradients and Satellite Altimetry -- 11.4 Conclusions -- References -- 12 Incorporating Topographic-Isostatic Information into GOCE Gravity Gradient Processing -- 12.1 Introduction -- 12.2 Rock-Water-Ice Methodology -- 12.3 Numerical Investigations -- 12.4 Conclusion -- References -- 13 Global Gravity Field Models from Different GOCE Orbit Products -- 13.1 Introduction -- 13.2 Precise Orbit Determination of GOCE. , 13.3 From GOCE Orbits to the Gravity Field -- 13.3.1 Theoretical Background -- 13.3.2 Model Settings -- 13.4 Results -- 13.5 Conclusion -- References -- 14 Adjustment of Digital Filters for Decorrelation of GOCE SGG Data -- 14.1 Introduction -- 14.2 Individual Filters for Decorrelation -- 14.2.1 High-Pass Filter -- 14.2.2 Notch Filter -- 14.2.3 Whitening Filter -- 14.3 Filter Cascade for Correlated GOCE SGG Data -- 14.4 Conclusions and Outlook -- References -- 15 Stochastic Modeling of GOCE Gravitational Tensor Invariants -- 15.1 Introduction -- 15.2 Statistical Study of GOCE Gravitational Invariants -- 15.3 Modeling the GOCE Invariant Noise -- 15.3.1 Modeling the Long Wavelength Errors -- 15.3.2 Simple Modeling of the Complete Spectrum -- 15.4 Summary and Conclusions -- References -- 16 Cross-Overs Assess Quality of GOCE Gradients -- 16.1 Introduction -- 16.2 Principle of XO Analysis and Data Pre-Processing -- 16.3 Analysis of XO Residuals -- 16.4 Numerical Quality Measures of GOCE Gradients -- 16.5 Summary and Conclusions -- References -- 17 Consistency of GOCE Geoid Information with in-situ Ocean and Atmospheric Data, Tested by Ocean State Estimation -- 17.1 Introduction -- 17.2 Methodology -- 17.2.1 Mean Dynamic Topography -- 17.2.2 GECCO -- 17.3 Results -- 17.3.1 Consistency with in situ Ocean Data -- 17.3.2 Consistency with Atmospheric Boundary Conditions -- 17.4 Concluding Remarks -- References -- 18 Regional Validation and Combination of GOCE Gravity Field Models and Terrestrial Data -- 18.1 Introduction -- 18.2 Validation of GOCE Gravity Field Models -- 18.3 Combination of GOCE and Terrestrial Data -- 18.4 Summary and Conclusions -- References -- 19 Height System Unification Based on GOCE Gravity Field Models: Benefits and Challenges -- 19.1 Introduction -- 19.2 Data Sets -- 19.3 Validation of Global GOCE Gravity Field Models. , 19.4 Combination of Global and Regional Gravity Field Models by Filtering -- 19.5 Unification of Height Systems in Europe Based on Gravity Field Models -- 19.6 Summary -- References -- 20 EIGEN-6C: A High-Resolution Global Gravity Combination Model Including GOCE Data -- 20.1 Introduction -- 20.2 Used Data and Combination Strategy -- 20.3 Main Characteristics and Evaluation of EIGEN-6C -- 20.4 Summary -- References -- Part III Future Missions -- 21 Future Gravity Field Satellite Missions -- 21.1 Introduction -- 21.1.1 Historical Background -- 21.1.2 Objectives -- 21.1.3 Technical Challenges and Constraints -- 21.2 Methodology, Analysis Challenges and Tools -- 21.2.1 Quick-Look Tools -- 21.2.2 Full-Scale Simulation (Methodology) -- 21.2.3 Analysis at PSD Level in Terms of Range Rates -- 21.2.4 Sensor Performance Breakdown and Budget -- 21.2.5 Sensor and System Simulation -- 21.3 Analysis and Selection of Mission Scenarios -- 21.3.1 Basic Mission Requirements -- 21.3.2 Laser Metrology and Atom Interferometry -- 21.3.3 Inertial Sensor Positioning and Gravitational Reference Point -- 21.3.4 From Initial to Final Selected Scenarios -- 21.4 Final Scenarios -- 21.4.1 System Design Approach for the Conservative Pendulum -- 21.4.2 System Design Approach for the Challenging Pendulum -- 21.4.3 Geodetic Comparison of Goal and Fallback Scenarios -- 21.5 Results and Outlook -- 21.5.1 Lessons Learnt -- 21.5.2 Roadmap -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...