GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (12)
  • OceanRep: Article in a Scientific Journal - peer-reviewed  (12)
  • 1
    Publication Date: 2020-02-06
    Description: On the basis of heat-flow measurements, seismic mapping, and sediment pore-water analysis, we demonstrate widespread and efficient ventilation of the 18–22 Ma oceanic crust of the northeast equatorial Pacific Ocean. Recharge and discharge appear to be associated with basement outcrops, including seamounts and north-south–trending faults, along which sediment cover thins out and volcanic rocks are exposed. Low-temperature hydrothermal circulation through the volcanic crust leads to the reduction of heat flow through overlying sediments, with measured heat-flow values that are well below those expected from conductive cooling curves for lithosphere of this age. Typically, dissolved pore-water oxygen decreases from the sediment surface downward, reaching minimum values at mid-depth and rising again in the lower part of the cores investigated, clearly indicating oxygen-rich seawater circulation through the oceanic crust underneath the sediments. If the residence time of the circulating fluids in the upper crust is short or the fluid flux is large, oxic conditions may be preserved, and oxygen can diffuse upwards into the sediments. This process, leading to widespread oxic conditions in the near-basement sediments, may cause the oxidation of residual reduced material stored in the deeper sediments, resulting in downward fluxes of the reaction products into the basement and from there back into the oceans. Considering the widespread existence of this type of off-axis ventilation, the net effect of the resulting return flow of reaction products on biogeochemical cycles and element fluxes (e.g., carbon and nitrogen) may be very large.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-01
    Description: Serpentinized peridotite and gabbronorite represent the host rocks to the active, ultramafic-hosted Logatchev hydrothermal field at the Mid-Atlantic Ridge. We use trace element, δ18O and 87Sr/86Sr data from bulk rock samples and mineral separates in order to constrain the controls on the geochemical budget within the Logatchev hydrothermal system. The trace element data of serpentinized peridotite show strong compositional variations indicating a range of processes. Some peridotites experienced geochemical modifications associated with melt-rock interaction processes prior to serpentinization, which resulted in positive correlations of increasing high field strength element (HFSE) concentrations and light rare earth element (LREE) contents. Other serpentinites and lizardite mineral separates are enriched in LREE, lacking a correlation with HFSE due to interaction with high-temperature, black-smoker type fluids. The enrichment of serpentinites and lizardite separates in trace elements, as well as locally developed negative Ce-anomalies, indicate that interaction with low-T ambient seawater is another important process in the Logatchev hydrothermal system. Hence, mixing of high-T hydrothermal fluids during serpentinization and/or re-equilibration of O-isotope signatures during subsequent low-T alteration is required to explain the trace element and δ18O temperature constraints. Highly radiogenic 87Sr/86Sr signatures of serpentinite and lizardite separates provide additional evidence for interaction with seawater-derived fluids. Sparse talc alteration at the Logatchev site are most likely caused by Si-metasomatism of serpentinite associated with the emplacement of shallow gabbro intrusion(s) generating localized hydrothermal circulation. In summary the geochemistry of serpentinites from the Logatchev site document subsurface processes and the evolution of a seafloor ultramafic hydrothermal system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-26
    Description: Highlights • The proposed method automatically assesses the abundance of poly-metallic nodules on the seafloor. • No manually created feature reference set is required. • Large collections of benthic images from a range of acquisition gear can be analysed efficiently. Abstract Underwater image analysis is a new field for computational pattern recognition. In academia as well as in the industry, it is more and more common to use camera-equipped stationary landers, autonomous underwater vehicles, ocean floor observatory systems or remotely operated vehicles for image based monitoring and exploration. The resulting image collections create a bottleneck for manual data interpretation owing to their size. In this paper, the problem of measuring size and abundance of poly-metallic nodules in benthic images is considered. A foreground/background separation (i.e. separating the nodules from the surrounding sediment) is required to determine the targeted quantities. Poly-metallic nodules are compact (convex), but vary in size and appear as composites with different visual features (color, texture, etc.). Methods for automating nodule segmentation have so far relied on manual training data. However, a hand-drawn, ground-truthed segmentation of nodules and sediment is difficult (or even impossible) to achieve for a sufficient number of images. The new ES4C algorithm (Evolutionary tuned Segmentation using Cluster Co-occurrence and a Convexity Criterion) is presented that can be applied to a segmentation task without a reference ground truth. First, a learning vector quantization groups the visual features in the images into clusters. Secondly, a segmentation function is constructed by assigning the clusters to classes automatically according to defined heuristics. Using evolutionary algorithms, a quality criterion is maximized to assign cluster prototypes to classes. This criterion integrates the morphological compactness of the nodules as well as feature similarity in different parts of nodules. To assess its applicability, the ES4C algorithm is tested with two real-world data sets. For one of these data sets, a reference gold standard is available and we report a sensitivity of 0.88 and a specificity of 0.65. Our results show that the applied heuristics, which combine patterns in the feature domain with patterns in the spatial domain, lead to good segmentation results and allow full automation of the resource-abundance assessment for benthic poly-metallic nodules.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: The Logatchev hydrothermal field (14 degrees 45'N on the MAR) is one of a few submarine hydrothermal systems associated with ultramafic rocks. It is situated on the eastern inner flank of the rift valley wall, 7 km away from the spreading axis and its formation has previously been linked to detachment faulting and core complex formation. Geological mapping during various ROV dives, geological sampling, and shallow drilling reveal a structural control of hydrothermal activity as well as its location in a debris flow consisting of heterogeneous ultramafic and mafic intrusive rocks. The mixed mafic/ultramafic host rock lithology is in agreement with published vent fluid and gas chemical data showing characteristics for interaction with mafic as well as with ultramafic rocks. Massive sulfide formation is more focused than previously thought and likely limited to a thin veneer at the seafloor. The Logatchev hydrothermal field shows a number of peculiarities that are unusual for most other hydrothermal systems. One of these are so-called,smoking craters", seafloor depressions that are several meters wide, characterized by an elevated crater rim made up partly of sulfide talus but also of abundant wall rock material. At these smoking craters hydrothermal venting occurs directly from holes within the craters and from small, cm to dm high, Cu-rich chimneys occurring at the crater rim. Based on geological mapping and sampling we suggest that these smoking craters are the product of processes related to the regional and local geological setting in an ultramafic-hosted, off-axis location with abundant landslides, as well as off-axis gabbroic intrusions providing the heat for the hydrothermal convection cell. (C) 2009 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-02-02
    Description: The sediment-hosted Grimsey hydrothermal field is situated in the Tjörnes fracture zone (TFZ) which represents the transition from northern Iceland to the southern Kolbeinsey Ridge. The TFZ is characterized by a ridge jump of 75 km causing widespread extension of the oceanic crust in this area. Hydrothermal activity occurs in the Grimsey field in a 300 m×1000 m large area at a water depth of 400 m. Active and inactive anhydrite chimneys up to 3 meters high and hydrothermal anhydrite mounds are typical for this field. Clear, metal-depleted, up to 250 °C hydrothermal fluids are venting from the active chimneys. Anhydrite samples collected from the Grimsey field average 21.6 wt.% Ca, 1475 ppm Sr and 3.47 wt.% Mg. The average molar Sr/Ca ratio is 3.3×10−3. Sulfur isotopes of anhydrite have typical seawater values of 22±0.7‰ δ34S, indicating a seawater source for SO42−. Strontium isotopic ratios average 0.70662±0.00033, suggesting the precipitation of anhydrite from a hydrothermal fluid–seawater mixture. The endmember of the venting hydrothermal fluids calculated on a Mg-zero basis contains 59.8 μmol/kg Sr, 13.2 mmol/kg Ca and a 87Sr/86Sr ratio of 0.70634. The average Sr/Ca partition coefficient between the hydrothermal fluids and anhydrite of about 0.67 implies precipitation from a non-evolved fluid. A model for fluid evolution in the Grimsey hydrothermal field suggests mixing of upwelling hydrothermal fluids with shallowly circulating seawater. Before and during mixing, seawater is heated to 200–250 °C which causes anhydrite precipitation and probably the formation of an anhydrite-rich zone beneath the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-22
    Description: From September to October 2002, shallow drilling, using the submersible (5 m) Rockdrill of the British Geological Survey and the German R/V Sonne revealed critical information on the subsurface nature of two distinct hydrothermal systems in the New Ireland fore-arc and the Manus Basin of Papua New Guinea. Drilling at Conical Seamount significantly extends the known surface extent of the previously discovered vein-style gold mineralization (up to 230 g/t Au) at this site. Drilling the conventional PACMANUS volcanic-hosted massive sulfide deposit recovered complexly textured massive sulfide with spectacular concentrations of gold in several core sections including 0.5 m @ 28 g/t Au, 0.35 m @ 30 g/t Au, and 0.20 m @ 57 g/t Au. Shallow drilling is a fast and cost efficient method that bridges the gap between surface sampling and deep (ODP) drilling and will become a standard practice in the future study of seafloor hydrothermal systems and massive sulfide deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-01-04
    Description: Marine researchers continue to create large quantities of benthic images e.g., using AUVs (Autonomous Underwater Vehicles). In order to quantify the size of sessile objects in the images, a pixel-to-centimeter ratio is required for each image, often indirectly provided through a geometric laser point (LP) pattern, projected onto the seafloor. Manual annotation of these LPs in all images is too time-consuming and thus infeasible for nowadays data volumes. Because of the technical evolution of camera rigs, the LP's geometrical layout and color features vary for different expeditions and projects. This makes the application of one algorithm, tuned to a strictly defined LP pattern, also ineffective. Here we present the web-tool DELPHI, that efficiently learns the LP layout for one image transect/collection from just a small number of hand labeled LPs and applies this layout model to the rest of the data. The efficiency in adapting to new data allows to compute the LPs and the pixel-to-centimeter ratio fully automatic and with high accuracy. DELPHI is applied to two real-world examples and shows clear improvements regarding reduction of tuning effort for new LP patterns as well as increasing detection performance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: There is a strong economic interest in commercial deep‐sea mining of polymetallic nodules and therefore a need to define suitable preservation zones in the abyssal plain of the Clarion Clipperton Fracture Zone (CCZ). However, besides ship‐based multibeam data, only sparse continuous environmental information is available over large geographic scales. We test the potential of modelling meiofauna abundance and diversity on high taxonomic level on large geographic scale using a random forest approach. Ship‐based multibeam bathymetry and backscatter signal are the only sources for 11 predictor variables, as well as the modelled abundance of polymetallic nodules on the seafloor. Continuous meiofauna predictions have been combined with all available environmental variables and classified into classes representing abyssal habitats using k‐means clustering. Results show that ship‐based, multibeam‐derived predictors can be used to calculate predictive models for meiofauna distribution on a large geographic scale. Predicted distribution varies between the different meiofauna response variables. To evaluate predictions, random forest regressions were additionally computed with 1,000 replicates, integrating varying numbers of sampling positions and parallel samples per site. Higher numbers of parallel samples are especially useful to smoothen the influence of the remarkable variability of meiofauna distribution on a small scale. However, a high number of sampling positions is even more important, integrating a greater amount of natural variability of environmental conditions into the model. Synthesis and applications. Polymetallic nodule exploration contractors are required to define potential mining and preservation zones within their licence area. The biodiversity and the environment of preservation zones should be representative of the sites that will be impacted by mining. Our predicted distributions of meiofauna and the derived habitat maps are an essential first step to enable the identification of areas with similar ecological conditions. In this way, it is possible to define preservation zones not only based on expert opinion and environmental proxies but also integrating evidence from the distribution of benthic communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-26
    Description: Osbourn Trough is a key piece in an outstanding problem: do the Ontong Java, Manihiki and Hikurangi large igneous provinces represent a single ~100 million km3 magmatic pulse? Bathymetric mapping of a 145-km-wide swath across the ∼900-km-long Osbourn Trough revealed three segments offset by 23–35-km-long basins that strike perpendicular to the trough axis. Each segment comprises a 10–15-km-wide axial valley bounded by 300–500-m-high ridge mountains, has inside corner highs at its NW and SE margins that rise 1000–1200 m above the axial valley, and has a flanking set of subparallel abyssal hills. Dredging on steep escarpments successfully penetrated thick sediments and recovered Fe–Mn oxyhydroxide-encrusted volcaniclastic breccias. Lava clasts within the breccias have undergone variable degrees of marine weathering, leading to strong enrichment in most alkali elements and the light REE (except Ce). Nevertheless, their immobile element concentrations are consistently MORB-like and they plot within the MORB fields of tectonic discrimination diagrams. Isotope analyses indicate an affinity with Pacific MORB-source mantle. Both the morphology of Osbourn Trough and geochemistry of its lavas establish that it represents an extinct spreading ridge system. The trough is nearly equidistant (1750 km vs. 1550 km) from the Manihiki and Hikurangi Plateaus, which we interpret as remnants of a formerly contiguous Ontong Java–Manihiki–Hikurangi large igneous province. Inception of the Osbourn spreading ridge was coincident with reorganization of the former Pacific–Phoenix–Farallon spreading system and mega-plateau fragmentation at ∼118 Ma. Spreading across Osbourn Trough ceased when the Hikurangi Plateau collided with and blocked a southward-dipping subduction system developed along the Chatham Rise (eastern New Zealand) sector of the Gondwana margin at ∼86 Ma.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-04
    Description: Mineralogical and geochemical investigation of altered host rock samples from the Logatchev hydrothermal field reveal a large variety of alteration styles at this site. Serpentinization is most intense in former harzburgites and dunites varying between 90-95%, whereas gabbros are mostly rather fresh. A combination of serpentinization, interaction with hot hydrothermal fluids, melt/rock interaction, and low-temperature seafloor weathering lead to significant gains and losses of major and trace elements. Serpentinization within the Logatchev hydrothermal field proceeds mainly isochemical for the major elements, except for a loss of TiO2 and CaO. However, the concentration of the trace elements Cu, Nb, Ba, La, Sm, Eu, Th or U increases significantly in the serpentinites. Gabbroic intrusions act as a sink for MgO during alteration due to the formation of chlorite and serpentine after clinopyroxene. Interaction between gabbros and hydrothermal fluids leads to significant redistribution of SiO2, TiO2, CaO, and Na2O as well as numerous trace elements. The different styles of alteration and their associated element changes reveal that samples from the entire Logatchev field have been influenced by hydrothermal fluids to some degree. Therefore, the hydrothermal fluid-dominated alteration of the ultramafic oceanic crust is a sink for many trace elements which were provided by mafic intrusions and mobilized by hydrothermal fluids and melt-rock interaction, whereas the gabbros accumulate high amounts of Mg from the seawater. Summarized the alteration processes at Logatchev are a combination of serpentinization, melt/rock interaction of serpentinites and mafic intrusions, and low-temperature seafloor weathering. (C) 2008 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...