GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (7)
  • OceanRep: Article in a Scientific Journal - peer-reviewed  (7)
  • Nature Research  (4)
  • American Chemical Society  (2)
  • AAAS (American Association for the Advancement of Science)  (1)
  • 1
    Publication Date: 2021-04-23
    Description: Accurate pH measurements in polar waters and sea ice brines require pH indicator dyes characterized at near-zero and below-zero temperatures and high salinities. We present experimentally determined physical and chemical characteristics of purified meta-Cresol Purple (mCP) pH indicator dye suitable for pH measurements in seawater and conservative seawater-derived brines at salinities (S) between 35 and 100 and temperatures (T) between their freezing point and 298.15 K (25 °C). Within this temperature and salinity range, using purified mCP and a novel thermostated spectrophotometric device, the pH on the total scale (pHT) can be calculated from direct measurements of the absorbance ratio R of the dye in natural samples as pHT=−log(kT2e2)+log(R−e11−Re3e2) Based on the mCP characterization in these extended conditions, the temperature and salinity dependence of the molar absorptivity ratios and − log(kT2e2) of purified mCP is described by the following functions: e1 = −0.004363 + 3.598 × 10−5T, e3/e2 = −0.016224 + 2.42851 × 10−4T + 5.05663 × 10−5(S − 35), and − log(kT2e2) = −319.8369 + 0.688159 S −0.00018374 S2 + (10508.724 − 32.9599 S + 0.059082S2) T−1 + (55.54253 − 0.101639 S) ln T −0.08112151T. This work takes the characterisation of mCP beyond the currently available ranges of 278.15 K ≤ T ≤ 308.15 K and 20 ≤ S ≤ 40 in natural seawater, thereby allowing high quality pHT measurements in polar systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-30
    Description: High-performance liquid chromatography-electrospray ionization mass spectrometry was applied to the detection of the iron(III) complexes of the hydroxamate siderophores rhodotoluric acid, deferrioxamine B, and deferrichrome. Separation of the iron(III) complexes was obtained using a polystyrene-divinylbenzene stationary phase. The retention and responses of ferrioxamine and ferrichrome were optimal when a gradient elution program with methanol and 0.1% (v/v) formic acid as the mobile phases was used. These conditions were also suitable for the retention and separation of the uncomplexed ligands. Retention of iron(III) rhodotoluate was improved when formic acid was replaced by the ion-pairing reagent heptafluorobutyric acid (0.1%). Detection limits for the ferric complexes, defined as 3 SD of the lowest determined standard, were 26 nM for iron(III) rhodotoluate, 0.23 nM for ferrioxamine, and 0.40 nM for ferrichrome. A protocol for the solid-phase extraction of these hydroxamate siderophores from seawater was developed and applied to the extraction of siderophores from enriched incubated seawater samples.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-30
    Description: High-performance liquid chromatography-electrospray ionization mass spectrometry was applied to the detection of the iron(III) complexes of the hydroxamate siderophores rhodotoluric acid, deferrioxamine B, and deferrichrome. Separation of the iron(III) complexes was obtained using a polystyrene-divinylbenzene stationary phase. The retention and responses of ferrioxamine and ferrichrome were optimal when a gradient elution program with methanol and 0.1% (v/v) formic acid as the mobile phases was used. These conditions were also suitable for the retention and separation of the uncomplexed ligands. Retention of iron(III) rhodotoluate was improved when formic acid was replaced by the ion-pairing reagent heptafluorobutyric acid (0.1%). Detection limits for the ferric complexes, defined as 3 SD of the lowest determined standard, were 26 nM for iron(III) rhodotoluate, 0.23 nM for ferrioxamine, and 0.40 nM for ferrichrome. A protocol for the solid-phase extraction of these hydroxamate siderophores from seawater was developed and applied to the extraction of siderophores from enriched incubated seawater samples.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Heme b is an iron-containing cofactor in hemoproteins that participates in the fundamental processes of photosynthesis and respiration in phytoplankton. Heme b concentrations typically decline in waters with low iron concentrations but due to lack of field data, the distribution of heme b in particulate material in the ocean is poorly constrained. Here we report particulate heme b distributions across the Atlantic Ocean (59.9°N to 34.6°S). Heme b concentrations in surface waters ranged from 0.10 to 33.7 pmol L−1 (median = 1.47 pmol L−1, n = 974) and were highest in regions with a high biomass. The ratio of heme b to particulate organic carbon (POC) exhibited a mean value of 0.44 μmol heme b mol−1 POC. We identified the ratio of 0.10 µmol heme b mol−1 POC as the cut-off between heme b replete and heme b deficient (anemic) phytoplankton. By this definition, we observed anemic phytoplankton populations in the Subtropical South Atlantic and Irminger Basin. Comparison of observed and modelled heme b suggested that heme b could account for between 0.17–9.1% of biogenic iron. Our large scale observations of heme b relative to organic matter provide further evidence of the impact of changes in iron supply on phytoplankton iron status across the Atlantic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Iron (Fe) bioavailability limits phytoplankton growth in vast ocean regions. Iron-rich dust uplifted from deserts is transported in the atmosphere and deposited on the ocean surface. However, this dust is a poor source of iron for most phytoplankton since dust-bound Fe is poorly soluble in seawater and dust rapidly sinks out of the photic zone. An exception is Trichodesmium, a globally important, N2 fixing, colony forming, cyanobacterium, which efficiently captures and shuffles dust to its colony core. Trichodesmium and bacteria that reside within its colonies carry out diverse metabolic interactions. Here we show evidence for mutualistic interactions between Trichodesmium and associated bacteria for utilization of iron from dust, where bacteria promote dust dissolution by producing Fe-complexing molecules (siderophores) and Trichodesmium provides dust and optimal physical settings for dissolution and uptake. Our results demonstrate how intricate relationships between producers and consumers can influence productivity in the nutrient starved open ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Dissolved organic matter (DOM) is a distinct component of Earth’s hydrosphere and provides a link between the biogeochemical cycles of carbon, nutrients, and trace metals (TMs). Binding of TMs to DOM is thought to result in a TM pool with DOM-like biogeochemistry. Here, we determined elemental stoichiometries of aluminum, iron, copper, nickel, zinc, cobalt, and manganese associated with a fraction of the DOM pool isolated by solid-phase extraction at ambient pH (DOM SPE-amb ) from the Amazon plume. We found that the rank order of TM stoichiometry within the DOM SPE-amb fraction was underpinned by the chemical periodicity of the TM. Furthermore, the removal of the TM SPE-amb pool at low salinity was related to the chemical hardness of the TM ion. Thus, the biogeochemistry of TMs bound to the DOM SPE-amb component in the Amazon plume was determined by the chemical nature of the TM and not by that of the DOM SPE-amb . Metal chemistry controls biogeochemistry of metals bound to organic matter in the Amazon plume.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Surface ocean pH is declining due to anthropogenic atmospheric CO2 uptake with a global decline of ~0.3 possible by 2100. Extracellular pH influences a range of biological processes, including nutrient uptake, calcification and silicification. However, there are poor constraints on how pH levels in the extracellular microenvironment surrounding phytoplankton cells (the phycosphere) differ from bulk seawater. This adds uncertainty to biological impacts of environmental change. Furthermore, previous modelling work suggests that phycosphere pH of small cells is close to bulk seawater, and this has not been experimentally verified. Here we observe under 140 μmol photons·m−2·s−1 the phycosphere pH of Chlamydomonas concordia (5 µm diameter), Emiliania huxleyi (5 µm), Coscinodiscus radiatus (50 µm) and C. wailesii (100 µm) are 0.11 ± 0.07, 0.20 ± 0.09, 0.41 ± 0.04 and 0.15 ± 0.20 (mean ± SD) higher than bulk seawater (pH 8.00), respectively. Thickness of the pH boundary layer of C. wailesii increases from 18 ± 4 to 122 ± 17 µm when bulk seawater pH decreases from 8.00 to 7.78. Phycosphere pH is regulated by photosynthesis and extracellular enzymatic transformation of bicarbonate, as well as being influenced by light intensity and seawater pH and buffering capacity. The pH change alters Fe speciation in the phycosphere, and hence Fe availability to phytoplankton is likely better predicted by the phycosphere, rather than bulk seawater. Overall, the precise quantification of chemical conditions in the phycosphere is crucial for assessing the sensitivity of marine phytoplankton to ongoing ocean acidification and Fe limitation in surface oceans.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...