GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (2)
  • OceanRep: Conference paper  (2)
  • 2015-2019  (2)
  • 2005-2009
  • 1
    facet.materialart.
    Unknown
    In:  [Paper] In: 19. International Conference on Soil Mechanics and Geotechnical Engineering, 17.-22.09.2017, Seoul, Republic of Korea .
    Publication Date: 2018-05-03
    Description: The understanding of thermo-hydro-chemo-mechanical coupling of dynamic processes, which occur in marine gas hydrate-bearing sediments during natural gas production or slope destabilization, is limited. Recent developments in geotechnical testing offer new approaches to closely simulate sub-marine in-situ conditions, and to generate benchmark tests for numerical model development. Especially when applied in combination with tomographic techniques (e.g. X-ray CT or ERT), high-pressure flow-through triaxial testing could answer important questions related to multi-scale effects, influence of spatial heterogeneities and process dynamics on the stress-strain behavior of gas hydrate-bearing sediments. Based on experimental studies on heterogeneous gas hydrate formation from two-phase fluid flow, we demonstrate the need for advanced mechanical testing. Further, we present the setup of advanced geotechnical test systems combined with X-ray CT or ERT analysis, as well as preliminary results from flow-through triaxial testing with the novel systems.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-10
    Description: This paper describes the utility of developing marine system models to aid the efficient and regulatory compliant development of offshore carbon storage, maximising containment assurance by well-planned monitoring strategies. Using examples from several model systems, we show that marine models allow us to characterize the chemical perturbations arising from hypothetical release scenarios whilst concurrently quantifying the natural variability of the system with respect to the same chemical signatures. Consequently models can identify a range of potential leakage anomaly detection criteria, identifying the most sensitive discriminators applicable to a given site or season. Further, using models as in-silico testbeds we can devise the most cost-efficient deployment of sensors to maximise detection of CO2 leakage. Modelling studies can also contribute to the required risk assessments, by quantifying potential impact from hypothetical release scenarios. Finally, given this demonstrable potential we discuss the challenges to ensuring model systems are available, fit for purpose and transferable to CCS operations across the globe.
    Type: Conference or Workshop Item , NonPeerReviewed , info:eu-repo/semantics/conferenceObject
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...