GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Geographic information systems-Iraq. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (524 pages)
    Edition: 1st ed.
    ISBN: 9783030213442
    Series Statement: Springer Water Series
    DDC: 621.3678
    Language: English
    Note: Intro -- Preface -- Contents -- Introduction -- 1 Introduction to "Environmental Remote Sensing and GIS in Iraq" -- 1.1 Iraq: A Brief Background -- 1.2 Soil Characterization, Modelling, and Mapping -- 1.3 Proximal Soil Sensing -- 1.4 RS and GIS for Land Cover/Land Use Change Monitoring -- 1.5 Land Degradation, Drought, and Dust Storms -- 1.6 Remote Sensing and GIS for Natural Resources -- References -- Soil Characterization, Modelling, and Mapping -- 2 Using Radar and Optical Data for Soil Salinity Modeling and Mapping in Central Iraq -- 2.1 Introduction -- 2.2 Methods and Materials -- 2.2.1 Study Area -- 2.2.2 Data -- 2.2.3 Approaches and Procedures -- 2.3 Results and Discussion -- 2.3.1 Correlation -- 2.3.2 Soil Salinity Models and Maps -- 2.3.3 Assessment of the Developed Approaches -- 2.4 Conclusions -- 2.5 Recommendations -- References -- 3 Using Remote Sensing to Predict Soil Properties in Iraq -- 3.1 Introduction -- 3.2 Case Studies -- 3.2.1 Prediction of Soil Organic Carbon and Nitrogen Forms -- 3.2.2 Prediction of Soil Salinity -- 3.2.3 Physical Properties -- 3.2.4 Prediction of Some Soil Water Properties -- 3.3 Conclusions -- References -- 4 Characterization and Classification of Soil Map Units by Using Remote Sensing and GIS in Bahar Al-Najaf, Iraq -- 4.1 Introduction -- 4.2 Geology of the Study Area -- 4.2.1 Geomorphological and Hydrological Phenomena of the Study Area -- 4.2.2 Classification of Iraqi Alluvial Soils -- 4.2.3 Remote Sensing -- 4.2.4 Accuracy Assessment of Digital Image Classification -- 4.2.5 Applications of RS in the Field of Iraqi Environment and Soils -- 4.2.6 Soil Surveying and Classification Studies of Bahar Al-Najaf Region -- 4.3 Methodology -- 4.3.1 The Geographical Location of Bahar Al-Najaf Region -- 4.3.2 FieldWork -- 4.3.3 Office Work -- 4.3.4 Accuracy Assessment for Digitalmap Classification. , 4.3.5 Preparation of GIS Database -- 4.4 Results and Discussion -- 4.4.1 Classification and Distribution of Soil Units in the Study Area -- 4.4.2 Digital Image Classification Using Remote Sensing Techniques -- 4.4.3 Accuracy Assessment of Digital Classification -- 4.5 Conclusions -- 4.6 Recommendations -- References -- Proximal Soil Sensing -- 5 Proximal Soil Sensing for Soil Monitoring -- 5.1 Introduction -- 5.1.1 Proximal Soil Sensing (PSS) -- 5.1.2 Soil Spectroscopy -- 5.1.3 Acquiring Reflectance Information from Soil -- 5.2 Background of Soil Spectroscopy -- 5.2.1 Soil Spectroscopy for Soil Properties Monitoring -- 5.2.2 Soil Spectroscopy for Soil Contamination Monitoring -- 5.3 Spectroscopic Preprocessing and Calibration -- 5.3.1 Preprocessing -- 5.3.2 Calibration -- 5.4 Accuracy and Uncertainty in Soil Spectroscopy -- 5.5 Soil Spectroscopy for Iron Oxide Prediction: A Case Study in Sulaimani, the Iraqi Kurdistan Region -- 5.5.1 Materials and Methods -- 5.5.2 Results -- 5.6 Conclusions -- 5.7 Recommendations and Future Aspects -- References -- 6 Proximal Soil Sensing Applications in Soil Fertility -- 6.1 Introduction -- 6.2 Background: Near-Infrared Spectroscopy Historical Review -- 6.2.1 The Potential of Vis-NIR Spectroscopy and Its Applications to Soil Analysis -- 6.3 Materials and Methods -- 6.3.1 Study Site Description and Soil Sampling -- 6.3.2 Soil Spectra Measurements -- 6.3.3 Data Analysis: Calibration -- 6.3.4 Evaluation of the Prediction Power -- 6.4 Results and Discussion -- 6.4.1 Vis-NIR Spectra of Soils -- 6.4.2 Nutrients Prediction by PLS Analysis -- 6.4.3 Nutrients Prediction by GIS-Kriging -- 6.5 Conclusions -- 6.6 Recommendations -- References -- RS and GIS for Land Cover/Land Use Change Monitoring -- 7 Multi-temporal Satellite Data for Land Use/Cover (LULC) Change Detection in Zakho, Kurdistan Region-Iraq -- 7.1 Introduction. , 7.2 Materials and Methods -- 7.2.1 Study Area -- 7.2.2 Data and Pre-processing -- 7.2.3 LULC Classification -- 7.2.4 LULC Mapping: Post Classification Change Detection -- 7.2.5 Accuracy and Area Assessment -- 7.3 Results and Discussion -- 7.3.1 LULC Analysis -- 7.3.2 LULC Patterns Change in the Study Area Between 1989 and 2017 -- 7.3.3 LULC Conversions for the Last 28 Years (1989-2017) -- 7.4 Conclusion -- 7.5 Recommendations -- References -- 8 Monitoring of the Land Cover Changes in Iraq -- 8.1 Introduction -- 8.2 Climate Changes in the World -- 8.3 Rainfall and Temperature -- 8.4 eMODIS NDVI V6 -- 8.5 Land Cover -- 8.6 Vegetation Distribution in Iraq -- 8.7 Vegetation Change Detection in Iraq -- 8.8 Relationship Between Vegetation Distribution, Precipitation and Elevation -- 8.9 Conclusion -- 8.10 Recommendation -- References -- 9 Effects of Land Cover Change on Surface Runoff Using GIS and Remote Sensing: A Case Study Duhok Sub-basin -- 9.1 Introduction -- 9.1.1 Land Cover and Land Use -- 9.1.2 Soil Conservation Service Curve Number (SCS-CN) Method -- 9.2 Methodology and Data -- 9.2.1 Study Area -- 9.2.2 Climate Conditions -- 9.2.3 Satellite and Rainfall Data -- 9.2.4 Images Classification -- 9.2.5 SCS-CN Model and the Proposed Method -- 9.2.6 Estimate Runoff Depth -- 9.3 Results and Discussion -- 9.3.1 Changes in Land Cover -- 9.3.2 Rainfall Variable in Time -- 9.3.3 Changes in Potential Runoff -- 9.4 Conclusions -- 9.5 Recommendations -- References -- Land Degradation, Drought, and Dust Storms -- 10 Monitoring and Mapping of Land Threats in Iraq Using Remote Sensing -- 10.1 Introduction -- 10.2 Soil Salinity -- 10.2.1 Monitoring and Mapping Soil Salinity -- 10.2.2 Dynamic Salinity Changes -- 10.2.3 Methodology for Monitoring and Mapping Soil Salinity -- 10.2.4 Salinity Changes in Mesopotamia. , 10.2.5 Effect of Soil Salinity on Vegetation Changes in Mesopotamia Plain -- 10.3 Land Cover/Land Use -- 10.3.1 Land Cover/Land Use Dynamic Changes -- 10.3.2 Methodology for Monitoring and Mapping LULC Changes in Iraq -- 10.4 Sand Dunes -- 10.4.1 Dynamic Changes for Sand Dunes Areas During 2006-2016 -- 10.5 Monitoring the Expansion of Urban Land -- 10.5.1 Impacts of Urbanization -- 10.5.2 Causes of Urbanization -- 10.6 Conclusions -- 10.7 Recommendations -- References -- 11 Agricultural Drought Monitoring Over Iraq Utilizing MODIS Products -- 11.1 Introduction -- 11.2 Materials and Methods -- 11.2.1 Selection of the Study Area -- 11.2.2 Data Collection and Processing -- 11.3 Results and Discussion -- 11.4 Conclusions -- References -- 12 The Aeolian Sand Dunes in Iraq: A New Insight -- 12.1 Introduction -- 12.2 Type of Aeolian Sand Dunes and Their Distribution in the World -- 12.3 Climate and Aeolian Sand Dunes in Iraq -- 12.4 Landsat, Sentinel-SAR Data -- 12.5 Aeolian Sand Dunes Distribution in Iraq -- 12.6 Aeolian Sand Dunes Monitoring in Iraq -- 12.7 Sand Dunes Movement in the Center of Mesopotamia -- 12.7.1 Preparing SAR Data for DInSAR -- 12.7.2 Results and Discussion of DInSAR -- 12.8 Conclusion -- 12.9 Recommendations -- References -- 13 Drought Monitoring for Northern Part of Iraq Using Temporal NDVI and Rainfall Indices -- 13.1 Introduction -- 13.2 Background -- 13.2.1 Drought as a Concept and Definition -- 13.2.2 Impact of Drought on Soil Properties -- 13.2.3 Drought Monitoring -- 13.2.4 Remote Sensing and GIS: Their Relation to Drought Issues -- 13.2.5 Moderate Resolution Imaging Spectroradiometer (MODIS) -- 13.2.6 Drought Mitigation: Options and Implementation -- 13.3 Materials and Methods -- 13.3.1 Study Area -- 13.3.2 Standardized Precipitation Index (SPI) -- 13.3.3 Pre-processing of Satellite Images -- 13.3.4 NDVI Calculations. , 13.3.5 Software Used -- 13.4 Result and Discussion -- 13.4.1 Drought Classification Based on Meteorological Data -- 13.4.2 Drought Classification Based on Remote Sensing Data -- 13.4.3 NDVI-Rainfall Relationship -- 13.4.4 Agricultural Drought Risk Based on NDVI Anomaly -- 13.5 Conclusions -- 13.6 Recommendations -- References -- 14 Remote Sensing and GIS for Dust Storm Studies in Iraq -- 14.1 Introduction -- 14.2 Remote Sensing for Dust Storm Studies -- 14.2.1 Dust Sources Identification -- 14.2.2 Dust Detection Using Satellite Imagery -- 14.2.3 Atmospheric Patterns of Dust Storms -- 14.2.4 Climate Regimes of Dust Storms -- 14.2.5 Dust Storm Tracking Model -- 14.2.6 Dust Emission (Soil Erosion) Assessment using Remote Sensing -- 14.2.7 Land Use/Land Cover Mapping Using Remote Sensing -- 14.2.8 Morphological Unite Maps -- 14.2.9 Drought and Dust Storms Studies using Remote Sensing -- 14.2.10 Remote Sensing Change Detection -- 14.3 GIS for Dust Storm Studies -- 14.3.1 Dust Sources Modeling with GIS -- 14.3.2 Knowledge-Based Approaches -- 14.3.3 GIS for Modeling the Effect of Dust Storms on Health -- 14.4 Summary -- References -- 15 Drought Monitoring Using Spectral and Meteorological Based Indices Combination: A Case Study in Sulaimaniyah, Kurdistan Region of Iraq -- 15.1 Introduction -- 15.2 The Study Area -- 15.3 Materials and Methods -- 15.3.1 Soil Samples Preparations -- 15.3.2 Remotely Sensed Datasets -- 15.3.3 Preprocessing of the Landsat Images -- 15.3.4 Drought Indices -- 15.3.5 SPI -- 15.3.6 Remote Sensing Based Drought Indices -- 15.3.7 NDVI -- 15.3.8 LST -- 15.3.9 NDWI -- 15.4 Results and Discussions -- 15.4.1 NDVI -- 15.4.2 NDWI -- 15.4.3 LST -- 15.4.4 SPI -- 15.4.5 The Combined NDVI-SPI Drought Maps -- 15.4.6 The Statistical Analysis -- 15.5 Conclusions -- References -- RS and GIS for Natural Resources. , 16 Geo-Morphometric Analysis and Flood Simulation of the Tigris River Due to a Predicted Failure of the Mosul Dam, Mosul, Iraq.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...