GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-15
    Description: Glucocorticoids are standard of care for many inflammatory conditions, but chronic use is associated with a broad array of side effects. This has led to a search for dissociative glucocorticoids—drugs able to retain or improve efficacy associated with transrepression [nuclear factor-B (NF-B) inhibition] but with the loss of side effects associated with transactivation (receptor-mediated transcriptional activation through glucocorticoid response element gene promoter elements). We investigated a glucocorticoid derivative with a -9,11 modification as a dissociative steroid. The -9,11 analog showed potent inhibition of tumor necrosis factor-α-induced NF-B signaling in cell reporter assays, and this transrepression activity was blocked by 17β-hydroxy-11β-[4-dimethylamino phenyl]-17α-[1-propynyl]estra-4,9-dien-3-one (RU-486), showing the requirement for the glucocorticoid receptor (GR). The -9,11 analog induced the nuclear translocation of GR but showed the loss of transactivation as assayed by GR-luciferase constructs as well as mRNA profiles of treated cells. The -9,11 analog was tested for efficacy and side effects in two mouse models of muscular dystrophy: mdx (dystrophin deficiency), and SJL (dysferlin deficiency). Daily oral delivery of the -9,11 analog showed a reduction of muscle inflammation and improvements in multiple muscle function assays yet no reductions in body weight or spleen size, suggesting the loss of key side effects. Our data demonstrate that a -9,11 analog dissociates the GR-mediated transcriptional activities from anti-inflammatory activities. Accordingly, -9,11 analogs may hold promise as a source of safer therapeutic agents for chronic inflammatory disorders.
    Print ISSN: 0022-3565
    Electronic ISSN: 1521-0103
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-26
    Description: The electrocatalytic reduction of protons to H2 by (where in the highly acidic ionic liquid dibutylformamidium bis(trifluoromethanesulfonyl)amide shows a strong dependence on added water. A turnover frequency of 43,000–53,000 s-1 has been measured for hydrogen production at 25 °C when the mole fraction of water (χH2O) is 0.72. The same catalyst in...
    Keywords: Chemical Approaches to Artificial Photosynthesis: Solar Fuels Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-01
    Description: Many monoclonal antibodies (mAbs) and other protein drugs have targets usually residing within tissues, making tissue concentrations of mAbs relevant to their pharmacologic effects. Therefore, knowledge of tissue distribution kinetics is important to better understand their pharmacokinetics and pharmacodynamics. The tissue distribution of mAbs is affected by many physiologic factors that may be altered in disease status. In the present work, we studied the tissue distribution kinetics of the fusion protein etanercept in inflamed joint tissues and examined the impact of inflammation on the tissue distribution of etanercept. Etanercept concentration profiles in plasma, blister fluid, and different tissues were obtained from healthy and collagen-induced arthritic (CIA) rats by use of a fluorescence quantification method via IRDye800CW labeling. Stepwise minimal and full physiologically based pharmacokinetic (PBPK) approaches were applied to characterize the distribution kinetics of etanercept in tissues in healthy and diseased animals. Etanercept exhibited modest tissue access (tissue/plasma area under the concentration curve [AUC] ratios 0.03–0.15 and estimated tissue reflection coefficients [ ] of 0.6–1.0), but with good penetration into arthritic paws (tissue/plasma AUC ratio 0.23 and 0.36). Etanercept exposure in the inflamed paws of CIA rats was approximately 3-fold higher than in normal paws taken from either CIA or healthy rats (tissue/plasma AUC ratios 0.23 versus 0.07 and 0.36 versus 0.71). The tissue distribution kinetics of etanercept in arthritic paws were well characterized with PBPK modeling approaches. Etanercept shows good penetration to arthritic paws in CIA rats. Our study indicates that inflammation produced increased tissue distribution of etanercept in CIA rats.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-11
    Description: Dexamethasone (DEX), a widely prescribed corticosteroid, has long been the cornerstone of the treatment of inflammation and immunologic dysfunctions in rheumatoid arthritis. Corticosteroids are frequently used in combination with other antirheumatic agents such as nonsteroidal anti-inflammatory drugs (NSAIDs) and disease-modifying antirheumatic drugs to mitigate disease symptoms and minimize unwanted effects. We explored the steroid dose-sparing potential of the NSAID naproxen (NPX) with in vitro and in vivo studies. The single and joint suppressive effects of DEX and NPX on the in vitro mitogen-induced proliferation of T lymphocytes in blood and their anti-inflammatory actions on paw edema were investigated in female and male Lewis rats with collagen-induced arthritis (CIA). As expected, DEX was far more potent than NPX in these systems. Mathematical models incorporating an interaction term were applied to quantitatively assess the nature and intensity of pharmacodynamic interactions between DEX and NPX. Modest synergistic effects of the two drugs were found in suppressing the mitogenic response of T lymphocytes. A pharmacokinetic/pharmacodynamic/disease progression model integrating dual drug inhibition quantitatively described the pharmacokinetics, time-course of single and joint anti-inflammatory effects (paw edema), and sex differences in CIA rats, and indicated additive effects of DEX and NPX. Further model simulations demonstrated the promising steroid-sparing potential of NPX in CIA rats, with the beneficial effects of the combination therapy more likely in males than females.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-09-19
    Description: Corticosteroids (CS) regulate the expression of numerous genes at the mRNA and protein levels. The time course of CS pharmacogenomics and proteomics were examined in livers obtained from adrenalectomized rats given a 50-mg/kg bolus dose of methylprednisolone. Microarrays and mass spectrometry-based proteomics were employed to quantify hepatic transcript and protein dynamics. One-hundred, sixty-three differentially expressed mRNA and their corresponding proteins (163 genes) were clustered into two dominant groups. The temporal profiles of most proteins were delayed compared with their mRNA, attributable to synthesis delays and slower degradation kinetics. On the basis of our fifth-generation model of CS, mathematical models were developed to simultaneously describe the emergent time patterns for an array of steroid-responsive mRNA and proteins. The majority of genes showed time-dependent increases in mRNA and protein expression before returning to baseline. A model assuming direct, steroid-mediated stimulation of mRNA synthesis was applied. Some mRNAs and their proteins displayed down-regulation following CS. A model assuming receptor-mediated inhibition of mRNA synthesis was used. More complex patterns were observed for other genes (e.g., biphasic behaviors and opposite directionality in mRNA and protein). Models assuming either stimulation or inhibition of mRNA synthesis coupled with dual secondarily induced regulatory mechanisms affecting mRNA or protein turnover were derived. These findings indicate that CS-regulated gene expression manifested at the mRNA and protein levels are controlled via mechanisms affecting key turnover processes. Our quantitative models of CS pharmacogenomics were expanded from mRNA to proteins and provide extended hypotheses for understanding the direct, secondary, and downstream mechanisms of CS actions.
    Print ISSN: 0022-3565
    Electronic ISSN: 1521-0103
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-09-08
    Description: The glucocorticoid-induced leucine zipper (GILZ) is an important mediator of anti-inflammatory corticosteroid action. The pharmacokinetic/pharmacodynamic/pharmacogenomic effects of acute and chronic methylprednisolone (MPL) dosing on the tissue-specific dynamics of GILZ expression were examined in rats. A mechanism-based model was developed to investigate and integrate the role of MPL and circadian rhythms on the transcriptional enhancement of GILZ in multiple tissues. Animals received a single 50-mg/kg intramuscular bolus or a 7-day 0.3-mg/kg/h subcutaneous infusion of MPL and were euthanized at several time points. An additional group of rats were euthanized at several times and served as 24-hour light/dark (circadian) controls. Plasma MPL and corticosterone concentrations were measured by high-performance liquid chromatography. The expression of GILZ and glucocorticoid receptor (GR) mRNA was quantified in tissues using quantitative real-time reverse-transcription polymerase chain reaction. The pharmacokinetics of MPL were described using a two-compartment model. Mild-to-robust circadian oscillations in GR and GILZ mRNA expression were characterized in muscle, lung, and adipose tissues and modeled using Fourier harmonic functions. Acute MPL dosing caused significant down-regulation (40%–80%) in GR mRNA and enhancement of GILZ mRNA expression (500%–1080%) in the tissues examined. While GILZ returned to its rhythmic baseline following acute dosing, a new steady-state was observed upon enhancement by chronic dosing. The model captured the complex dynamics in all tissues for both dosing regimens. The model quantitatively integrates physiologic mechanisms, such as circadian processes and GR tolerance phenomena, which control the tissue-specific regulation of GILZ by corticosteroids. These studies characterize GILZ as a pharmacodynamic marker of corticosteroid actions in several tissues.
    Print ISSN: 0022-3565
    Electronic ISSN: 1521-0103
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-06-10
    Description: Tumor necrosis factor- α (TNF- α ) is a soluble cytokine and target of specific monoclonal antibodies (mAbs) and other biologic agents used in the treatment of inflammatory diseases. These biologics exert their pharmacological effects through binding and neutralizing TNF- α , and thus they prevent TNF- α from interacting with its cell surface receptors. The magnitude of the pharmacological effects is governed not only by the pharmacokinetics (PK) of mAbs, but also by the kinetic fate of TNF- α . We have examined the pharmacokinetics of recombinant human TNF- α (rhTNF- α ) in rats at low doses and quantitatively characterized its pharmacokinetic features with a minimal physiologically based pharmacokinetic model. Our experimental and literature-digitalized PK data of rhTNF- α in rats across a wide range of doses were applied to global model fitting. rhTNF- α exhibits permeability rate–limited tissue distribution and its elimination is comprised of a saturable clearance pathway mediated by tumor necrosis factor receptor binding and disposition and renal filtration. The resulting model integrated with classic allometry was further used for interspecies PK scaling and resulted in model predictions that agreed well with experimental measurements in monkeys. In addition, a semimechanistic model was proposed and applied to explore the absorption kinetics of rhTNF- α following s.c. and other routes of administration. The model suggests substantial presystemic degradation of rhTNF- α for s.c. and i.m. routes and considerable lymph uptake contributing to the overall systemic absorption through the stomach wall and gastrointestinal wall routes of dosing. This report provides comprehensive modeling and key insights into the complexities of absorption and disposition of a major cytokine.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-06-10
    Description: The soluble cytokine tumor necrosis factor- α (TNF- α ) is an important target for many therapeutic proteins used in the treatment of rheumatoid arthritis. Biologics targeting TNF- α exert their pharmacologic effects through binding and neutralizing this cytokine and preventing it from binding to its cell surface receptors. The magnitude of their pharmacologic effects directly corresponds to the extent and duration of free TNF- α suppression. However, endogenous TNF- α is of low abundance, so it is quite challenging to assess the free TNF- α suppression experimentally. Here we have applied an experimental approach to bypass this difficulty by giving recombinant human TNF- α (rhTNF- α ) to rats by s.c. infusion. This boosted TNF- α concentration enabled quantification of TNF- α in plasma. Free rhTNF- α concentrations were measured after separation from the infliximab-rhTNF- α complex using Dynabeads Protein A. The interrelationship of infliximab and TNF- α was assessed with minimal physiologically based pharmacokinetic models for TNF- α and infliximab with a target-mediated drug disposition component. Knowledge of TNF- α pharmacokinetics allows reliable prediction of the free TNF- α suppression with either free or total TNF- α concentration profiles. The experimental and modeling approaches in our study may aid in the development of next-generation TNF- α inhibitors with improved therapeutic effects.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-11-19
    Description: Hydrogenases interconvert H2 and protons at high rates and with high energy efficiencies, providing inspiration for the development of molecular catalysts. Studies designed to determine how the protein scaffold can influence a catalytically active site have led to the synthesis of amino acid derivatives of [Ni(P2RN2R′)2]2+ complexes, [Ni(P2CyN2Amino acid)2]2+ (CyAA). It...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-07-23
    Description: The circadian dynamics of important neuroendocrine-immune mediators have been implicated in progression of rheumatoid arthritis pathophysiology, both clinically as well as in animal models. We present a mathematical model that describes the circadian interactions between mediators of the hypothalamic-pituitary-adrenal (HPA) axis and the proinflammatory cytokines. Model predictions demonstrate that chronically elevated cytokine expression results in the development of adrenal insufficiency and circadian variability in paw edema. Notably, our model also predicts that an increase in mean secretion of corticosterone (CST) after the induction of the disease is accompanied by a decrease in the amplitude of the CST oscillation. Furthermore, alterations in the phase of circadian oscillation of both cytokines and HPA axis mediators are observed. Therefore, by incorporating the circadian interactions between the neuroendocrine-immune mediators, our model is able to simulate important features of rheumatoid arthritis pathophysiology.
    Print ISSN: 0193-1849
    Electronic ISSN: 1522-1555
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...