GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-18
    Description: Author(s): Jize Zhao, Shijie Hu, Jun Chang, Ping Zhang, and Xiaoqun Wang We study the effect of the synthetic spin-orbit coupling in a two-component Bose-Hubbard model in one dimension by employing the density-matrix renormalization group method. A ferromagnetic long-range order emerges in both Mott-insulator and superfluid phases resulting from the spontaneous breaking ... [Phys. Rev. A 89, 043611] Published Thu Apr 17, 2014
    Keywords: Matter waves and collective properties of cold atoms and molecules
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-05
    Description: Cobalt tungstate (CoWO 4 ) nanocrystals with an average size of 20–50 nm were synthesized via a template- or surfactant-free hydrothermal route. The crystal structure and morphology of the as-synthesized CoWO 4 sample were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Magnetic measurements on the as-synthesized CoWO 4 nanocrystals indicate a Néel temperature ( T N ) of ∼40 K. This lower T N may be a result of the nanostructured particles that reduce the exchange coupling. The new synthetic route presented in this paper has potential applications to fabricate other metal tungstates (MWO 4 ) materials.
    Print ISSN: 0232-1300
    Electronic ISSN: 1521-4079
    Topics: Geosciences , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-06-28
    Description: A nonlinear theory is developed to describe the cylindrical Richtmyer-Meshkov instability (RMI) of an impulsively accelerated interface between incompressible fluids, which is based on both a technique of Padé approximation and an approach of perturbation expansion directly on the perturbed interface rather than the unperturbed interface. When cylindrical effect vanishes (i.e., in the large initial radius of the interface), our explicit results reproduce those [Q. Zhang and S.-I. Sohn, Phys. Fluids 9, 1106 (1996)] related to the planar RMI. The present prediction in agreement with previous simulations [C. Matsuoka and K. Nishihara, Phys. Rev. E 73 , 055304(R) (2006)] leads us to better understand the cylindrical RMI at arbitrary Atwood numbers for the whole nonlinear regime. The asymptotic growth rate of the cylindrical interface finger (bubble or spike) tends to its initial value or zero, depending upon mode number of the initial cylindrical interface and Atwood number. The explicit conditions, directly affecting asymptotic behavior of the cylindrical interface finger, are investigated in this paper. This theory allows a straightforward extension to other nonlinear problems related closely to an instable interface.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...