GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 113 . C04014.
    Publication Date: 2019-09-23
    Description: The open-ocean oxygen minimum zone (OMZ) south and east of the Cape Verde Islands is studied from CTD hydrography, ADCP velocities, Argo float trajectories, and historical data, with a focus on the zonal supply and drainage paths. The strongest oxygen minimum is located north of the North Equatorial Countercurrent (NECC) at about 400 to 500-m depth just above the boundary between Central Water and Antarctic Intermediate Water (AAIW). It is shown that the NECC, the North Equatorial Undercurrent at 4 to 6°N, and a northern branch of the NECC at 8 to 10°N are the sources for oxygen-rich water supplied to the OMZ in summer and fall. A weak eastward NECC at 200-m depth also exists in winter and spring as derived from Argo floats drifting at shallow levels. Historical oxygen data from 200-m depth confirm this seasonality showing high (low) oxygen content in summer and fall (spring) within the supply paths. Compared to the strong oxygen supply at 150 to 300-m depth, the ventilation of the OMZ at 300 to 600-m depth is weaker. Westward drainage of oxygen-poor water takes place north of the Guinea Dome, i.e., north of 10°N, most pronounced at 400 to 600-m depth. In July 2006 the total eastward transport of both NECC bands above σ θ = 27.1 kg m−3 at 23°W was about 13 Sv (1 Sv = 106 m3 s−1). About half of this water volume circulates within the Guinea Dome or recirculates westward north of the Guinea Dome.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...