GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Leaf mineral concentrations of co-occurring Erica arborea, Juniperus communis and Myrtus communis were measured at bimonthly intervals throughout a year in a natural CO2 spring and in a nearby control site with similar soil chemistry in a Mediterranean environment. There were different responses to the elevated [CO2] (c. 700 μL L−1) of the spring site plants depending on the element and the species. In the CO2 spring site K, Ca, Mg, Mn, Al, Fe, and Ti leaf concentrations and the ratio C/N showed significant greater values in at least one or two of the three species. Leaf S concentration were greater in all three species. Leaf concentrations of N, Sr, Co, and B were lower in at least one or two species, and those of C and Ba were lower in all the three studied species near the CO2 spring. P, Na, Zn, Si, Cu, Ni, Cr, Pb, Mo, V and Cd leaf concentrations and the specific leaf area (SLA, measured in Myrtus communis) did not show any consistent or significant pattern in response to the elevated [CO2] of the spring site. There was a slight trend towards maximum concentrations of most of these elements during autumn–winter and minimum values during the spring season, especially in Myrtus communis. Multivariate principal component analyses based on the leaf elemental concentrations clearly differentiated the two sites and the three species. Lower concentrations at the spring site were not the result of a dilution effect by increased structural or nonstructural carbon. In contrast to most experimental studies of CO2 enrichment, mainly conducted for short periods, several of these elements had greater concentrations in the CO2 spring site. Nutrient acclimation and possible causes including decreased nutrient export, increased nutrient uptake capacity, photosynthetic down-regulation, Mediterranean water stress, and higher H2S concentration in the spring site are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...