GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 154 (1984), S. 593-599 
    ISSN: 1432-136X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Performance by perfused isolated hearts of sea raven (Hemitripterus americanus) and skate (Raja erinecea), representatives of teleost and elasmobranch fishes, respectively, was monitored over a 30 min period under conditions of variable metabolic fuel availability. In both preparations initial cardiac output and hence fuel delivery to the myocardia were comparable to in vivo levels. Pressure development and hence overall work rate of the sea raven heart was also similar to in vivo levels. Fuel deprived sea raven hearts entered into a modest but significant contractile failure which could be prevented by the inclusion of 10 mM glucose or 1.0 mM palmitate in the perfusion medium. Addition of the glycolytic inhibitor iodoacetate to the medium resulted in rapid heart failure. Performance in the presence of iodoacetate could be improved by the inclusion of palmitate, lactate, or acetoacetate in the perfusion media but only high physiological levels of palmitate could completely alleviate the effect of iodoacetate. The inclusion of 1.0 mM palmitate in the perfusion medium of skate hearts resulted in a significant decrease in performance relative to fuel deprived hearts. Addition of iodoacetate to the medium resulted in rapid contractile failure. Hearts perfused with medium containing both iodoacetate and acetoacetate performed as well as fuel deprived hearts, indicating that this ketone body is an effective metabolic fuel. The performance data reported here are consistent with a previously established biochemical framework. The teleost heart has the capability of utilizing exogenous fatty acid as a metabolic fuel and this substrate may be able to support the contractile process independently. In contrast, fatty acid metabolism in the elasmobranch heart is poorly developed and appears to be more dependent upon the catabolism of blood borne ketone bodies.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...