GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 18 (1997), S. 2874-2879 
    ISSN: 0173-0835
    Keywords: DNA fingerprinting ; Two-dimensional DNA electrophoresis ; Numerical iteration ; Relaxation method ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Two-dimensional (2-D) DNA fingerprinting is a technique that allows for parallel genome analysis through the simultaneous detection of up to 500 minior microsatellite loci on a 2-D gel. Separation is performed according to size and melting temperature in the gel. In the application of this technique in genome analysis, a standardized method for the identification of individual spots is required. However, due to the polymorphic nature of up to 80% of the spots, existing standardization methods that have been primarily developed for 2-D protein patterns are not suitable for this task. We developed a robust method that standardizes 2-D DNA fingerprint spots on the basis of melting temperature - or denaturing gradient position - and fragment size. An external marker was used as a basis for standardization. A normalization surface was calculated over the gel dimensions by adapting an established numerical iteration technique previously used in physics termed “relaxation method”. The relaxation method works robustly with the irregularly spaced marker spots. The evaluation of the method for a spot of preknown position derived from the TP53 gene revealed a median observed error below 1% for fragment length and denaturing gradient position. The search for candidate minisatellite loci in genomic difference analysis depends on the reliable identification of alleles of this locus in different individuals. We proved experimentally that alleles of a single minisatellite locus cloned from a 2-D gel cluster on an isothermal line can be reliably identified using the presented standardization method. In conclusion, a standardization tool for a broader application of 2-D DNA fingerprinting in both tumor analysis and possibly parallel mutation screening is now available.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...