GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Biochemical markers-Congresses. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (333 pages)
    Edition: 1st ed.
    ISBN: 9789402421019
    Series Statement: NATO Science for Peace and Security Series a: Chemistry and Biology Series
    DDC: 610.28
    Language: English
    Note: Intro -- Acknowledgements -- About This Book -- Contents -- About the Editors -- Part I: Techniques for Biomarker Development -- Chapter 1: Reducing Uncertainties in Live Monitoring of Radiation in Wildlife -- 1.1 Introduction -- 1.2 Monitoring Radiation Doses to Wildlife -- 1.3 Determining Internal Radiation in Wildlife -- 1.3.1 Non-lethal, Invasive Sampling for Radiation Determination in Wildlife -- 1.3.2 Non-lethal, Non-invasive Gamma Analysis of Radiation in Wildlife -- 1.4 Examples of Live-Animal Radioisotope Tracing Studies in the Laboratory -- 1.5 Reducing Uncertainties in Live Monitoring of Radiation in Aquatic Organisms -- 1.5.1 Animal Rinsing Pre Radioanalysis -- 1.5.2 Accounting for Live Animal Movement -- 1.5.2.1 Amphibians -- 1.5.2.2 Ascidians -- 1.5.2.3 Bivalves -- 1.5.2.4 Decapod Crustaceans -- 1.5.2.5 Fish -- 1.5.2.6 Gastropods -- 1.5.2.7 Other Factors to Reduce Uncertainty When Radioanalysing Live Aquatic Organisms -- 1.5.3 Efficiency Calibration for Live Animal Radioanalysis -- 1.5.3.1 Phantoms -- 1.5.3.2 Creation of Standard Liquid Geometries -- 1.5.3.3 Modelling Software -- 1.5.4 Limits of Detection and Calibration for Field Monitoring Purposes -- 1.6 Detectors Suitable for Field Applications -- 1.7 Summary and Conclusion -- References -- Chapter 2: Synchrotron Light Facilities and Applications in Life Sciences -- 2.1 Introduction -- 2.2 Synchrotron Light and Sources -- 2.3 Experimental Techniques -- 2.4 Applications in Life Sciences -- 2.5 Summary -- References -- Chapter 3: Elemental Imaging in Biology Using Synchrotron X-Ray Fluorescence Microscopy -- 3.1 Introduction -- 3.2 XFM Exploration of Elemental Concentration, Distribution and Translocation in Differentiation and Normal Homeostasis -- 3.3 Use of XFM for Examination of Pathological Elemental Misbalance in Disease -- 3.4 XFM Analyses of Elemental Content in Cancer. , 3.5 XFM Investigation of (Experimental) Elemental Overload -- 3.6 XFM Exploration Beyond Mammals: Elemental Concentration, Distribution and Speciation in Bacteria, Eukaryotic Single Cell Organisms and Plants -- 3.7 Conclusions -- References -- Chapter 4: Data and Biomaterial Archives in Radioecology and Radiobiology -- the Importance of STOREing -- 4.1 Introduction -- 4.2 Environmental and Ecological Data -- 4.2.1 Environmental Information Data Centre -- 4.2.2 The Radioecology Exchange -- 4.2.3 Other Dedicated Databases -- 4.3 Biological and Inorganic Sample Archives -- 4.3.1 Radioecology Exchange Samples Register -- 4.3.2 Sample Bank of Fukushima Animals, Japan -- 4.4 STORE DB -- a Database for Radiobiology, Radioecology and Epidemiology -- 4.5 Database and Bioresource Sustainability -- 4.6 Conclusions -- References -- Part II: Low-Dose Effect Mechanisms -- Chapter 5: Modelling Direct and Indirect Effects of Radiation: Experimental, Clinical and Environmental Implications -- 5.1 Introduction -- 5.2 Multiscale Modelling to Study Radiation Effects -- 5.2.1 Mathematical Model: Multiscale Approach -- 5.2.2 Multiscale Model Implementation -- 5.2.3 Applications of Systems Biology Simulations -- 5.3 Modelling Cellular Response to Radiotherapy: Simulation and Validation -- 5.3.1 Setting the Scene: Modelling Cellular Growth -- 5.3.2 Modelling the Cellular Microenvironment -- 5.3.3 Treatment Delivery and Response Modelling -- 5.3.4 Simulation Validation -- 5.4 Modelling Indirect Effects: Radiation-Induced Bystander Effects -- 5.5 Conclusions and Overview -- References -- Chapter 6: Immune Networks in the Context of Low Dose Ionizing Radiation -- 6.1 Introduction -- 6.2 Irradiated Tissues Respond with a Bona fide Inflammatory Response -- 6.3 Danger & -- Inflammation Build the Bridge to Adaptive Immunity -- 6.3.1 The Sting of Radiation. , 6.3.2 Radiation-Induced DNA-Damage - A Gift That Keeps on Giving -- 6.4 Inflammaging - How Radiation Makes us Immunologically Older -- 6.5 Redox, Radiation-Induced Signaling Networks and Immune Engagement -- 6.6 Summary -- References -- Chapter 7: Learning from NATO Biomarker Research for Humans -- 7.1 Biological Dosimetry for Radiation-Exposure in Humans -- 7.2 A Panel of Biomarkers as Novel Tool for Early Detection of Radiation-Exposure (G4815 NATO SPS-Funded Project) -- 7.2.1 Introduction -- 7.2.2 Experimental Approach -- 7.2.3 Preliminary Results -- 7.3 Implementation of a Novel Set of Early Biomarkers for Measuring Radiation Dose in Case of Emergency -- 7.3.1 Exosomes as Biomarkers -- 7.4 What Can Be Transferred from Biomarkers Research on Humans for Dose Assessment in Environmental Radiological Protection? -- References -- Part III: Biomarkers for Risk Evaluation -- Chapter 8: Exosomes as Radiation Biomarkers -- 8.1 Introduction -- 8.1.1 Exosome Biogenesis and Release -- 8.1.2 Communication Between Donor and Recipient Cells -- 8.2 Exosome Isolation and Its Biophysical Characterization -- 8.3 Exosomal Cargo as a Diagnostic Biomarker -- 8.4 Radiation Treatments and Its Impact on Exosome Biogenesis -- 8.5 Conclusion -- References -- Chapter 9: Monitoring Very Low Dose Radiation Damage in DNA Using "Field-Friendly" Biomarkers -- 9.1 Ionising Radiation-Induced DNA and Chromosome Damage -- 9.2 DNA Damage-Associated Biomarkers of Ionising Radiation Exposure -- 9.3 Cytogenetic Markers -- 9.3.1 The Dicentric Assay -- 9.3.2 The Micronucleus Assay -- 9.3.3 The Premature Chromosome Condensation (PCC) Assay -- 9.3.4 Translocation Analysis -- 9.4 Markers of DNA Damage -- 9.4.1 Single Cell Gel Electrophoresis -- 9.4.2 DNA Damage Foci -- 9.5 Conclusion -- References -- Chapter 10: The Development of Bio-assays Based on Non-targeted Effects of Radiation. , a Potential Worm-Hole into Ecosystem Level Biomarkers -- 10.1 Background and Potential Relevance of NTE -- 10.1.1 What Are NTE? -- 10.1.2 Environmental Studies and Prevalence in Species -- 10.1.2.1 Inter-organism Communication -- 10.1.2.2 Relevance for Other Stressors -- 10.2 Improving Environmental Biomarkers -- 10.2.1 Need for Non-lethal Sampling -- 10.2.2 Need for Population and Ecosystem Level Markers -- 10.3 Case Studies -- 10.3.1 How NTE Markers Relate to Ecosystem -- 10.3.2 Fish Case Study -- 10.3.3 Worm Case Study -- 10.3.4 Frog Case Study -- 10.4 Future Needs and Conclusion -- References -- Part IV: Biomarkers in Wildlife -- Chapter 11: Birds as Bioindicators of Radioactive Contamination and Its Effects -- 11.1 Birds as Bioindicators -- 11.2 Birds as Indicators of the Fate of Radioactive Contaminants -- 11.3 Birds as Sentinels of Low-Dose Radiation Effects -- 11.3.1 Physiological, Genetic and Morphological Effects of Radiation on Birds: A Role for Oxidative Stress -- 11.3.2 Sperm Motility as a Sensitive Endpoint in Birds Exposed to Ionizing Radiation -- 11.3.3 Interspecific Variation in Susceptibility to Radioactive Contamination -- References -- Chapter 12: Amphibians in Field Radioecology: A Review and Perspective -- 12.1 Introduction -- 12.2 Amphibians in Field Radioecology: A Review -- 12.2.1 Radionuclide Concentrations in Wild Amphibians -- 12.2.2 Biological Effects of Ionizing Radiation on Wild Amphibians -- 12.3 Future Research Directions in Field Radioecology with Amphibians -- References -- Chapter 13: Measuring Adaptive Responses Following Chronic and Low Dose Exposure in Amphibians -- 13.1 Introduction -- 13.2 Methodology -- 13.2.1 The Study Sites -- 13.2.2 Micronucleus Assay -- 13.2.2.1 In Vitro Experiments (Gamma Irradiations Performed on the Cell Cultures). , 13.2.2.2 In Vivo Experiments (Live Animals Exposed to Gamma Irradiation) -- 13.2.2.3 Slide Preparation -- 13.2.3 Fatty Acid Composition -- 13.2.4 Bystander Effect -- 13.3 Results and Discussion -- 13.4 Concluding Remarks -- References -- Chapter 14: Are There Ecosystem-Relevant Endpoints for Measuring Radiation Impacts? -- 14.1 Introduction and Terminology -- 14.2 Why Can't We Just Extrapolate from 'Lower' Level to Ecosystem-Level Effects? -- 14.2.1 Limitations of Biomarkers Themselves -- 14.2.2 Extrapolation and Problems Encountered -- 14.3 What Can We Measure to Detect Ecosystem-Level and Ecosystem-Relevant Effects from a Scientific Point of View? -- 14.3.1 Structural Endpoints -- 14.3.2 Functional Endpoints -- 14.3.3 Network Metrics and Ecological Network Analysis -- 14.4 What Can/Should We Measure to Detect Ecosystem-Level and Ecosystem-Relevant Effects in Risk Assessment? -- 14.4.1 Ecosystem-Based Approach to Assessment -- 14.4.2 Ecosystem Services -- 14.5 Linking Ecosystem Effects to a Stressor of Interest -- 14.5.1 Multivariate Methods -- 14.5.2 Linear Models -- 14.6 Conclusions -- References -- Chapter 15: Biomarkers and Ecological indicators for Environmental Radioactivity in Invertebrates -- 15.1 Introduction -- 15.2 Biomarkers for Exposure -- 15.2.1 Micronuclei -- 15.2.2 Comet Assay -- 15.2.3 Cytochrome p450 -- 15.2.4 Oxidative Stress -- 15.3 Ecological Indicators -- 15.3.1 Behaviour -- 15.4 Considerations -- References -- Part V: Biomarker Use and Responses -- Chapter 16: Biomarkers of Radiation and Risk Assessment by Ionizing Radiation, Countermeasures for Radiation Protection of Environment, Workers and Public -- 16.1 Introduction -- 16.1.1 Challenges for Establishment of Albanian Legislation and Regulations According EU -- 16.1.2 Ionizing Radiation Exposures and Determining Risk Health. , 16.1.3 General Considerations on Biomarkers for Use in Epidemiological Studies.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...