GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Molecular dynamics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (375 pages)
    Edition: 1st ed.
    ISBN: 9780128166161
    DDC: 541.394
    Language: English
    Note: Front Cover -- Molecular Dynamics Simulation -- Copyright Page -- Contents -- List of symbols -- Preface -- 1 Fundamentals of classical molecular dynamics simulation -- 1.1 Introduction -- 1.1.1 Atomistic simulation -- 1.1.2 Molecular dynamics simulation -- 1.1.3 Applications of molecular dynamics simulation -- 1.1.4 Limitations of molecular dynamics simulation -- 1.2 Fundamentals of molecular dynamics simulation -- 1.2.1 Procedure -- 1.2.2 System initialization -- 1.2.3 Periodic boundary conditions -- 1.2.4 Energy minimization and structure optimization -- 1.2.5 Force calculation -- 1.2.6 Time integration algorithms -- 1.2.7 Neighbor list -- 1.2.8 Ensemble and statistical observables -- 1.2.9 Accuracy of MD simulation -- 1.3 Hardware and software for MD simulation -- References -- 2 Potential energy functions -- 2.1 The Born-Oppenheimer assumption -- 2.1.1 Construction of potential energy functions -- 2.1.2 Two-body potentials -- 2.1.3 Many-body potentials -- 2.2 Potential energy functions for different materials -- 2.2.1 Ionic materials -- 2.2.2 Metals -- 2.2.3 Covalent materials -- 2.2.4 Molecular systems -- References -- 3 Control techniques of molecular dynamics simulation -- 3.1 Types of constraints in molecular dynamics simulation -- 3.2 Thermodynamic ensembles -- 3.3 Temperature control -- 3.3.1 Thermostat based on simple velocity rescaling -- 3.3.2 Gaussian thermostat -- 3.3.3 Berendsen thermostat -- 3.3.4 Bussi-Donadio-Parrinello thermostat -- 3.3.5 Andersen thermostat -- 3.3.6 Langevin thermostat -- 3.3.7 Nosé-Hoover thermostat -- 3.3.8 Thermostat effects in equilibrium molecular dynamics simulations -- 3.3.9 Temperature control in nonequilibrium molecular dynamics simulations -- 3.4 Pressure control -- 3.4.1 Berendsen barostat -- 3.4.2 Andersen barostat -- 3.4.3 Parrinello-Rahman barostat. , 3.4.4 Martyna-Tuckerman-Tobias-Klein barostat -- 3.5 Boundary conditions -- 3.6 Rigid bond constraints -- References -- 4 Advanced ab initio molecular dynamics and coarse-grained molecular dynamics -- 4.1 Motivations for the development of advanced molecular dynamics simulation methods -- 4.2 Ab initio molecular dynamics -- 4.2.1 Quantum mechanics foundation of classical molecular dynamics -- 4.2.2 Born-Oppenheimer molecular dynamics -- 4.2.3 Car-Parrinello molecular dynamics -- 4.3 Coarse-grained molecular dynamics -- 4.3.1 Theoretical formulation -- 4.3.2 Iterative Boltzmann inversion method -- 4.3.3 Multiscale coarse-grained method -- 4.3.4 Relative entropy optimization method -- 4.3.5 Challenges -- References -- 5 Application of molecular dynamics simulation in mechanical problems -- 5.1 Role of molecular dynamics simulation in modeling the mechanical properties of materials -- 5.2 Tensile, compressive, and shear tests -- 5.2.1 Tensile tests -- 5.2.2 Compressive tests -- 5.2.3 Shear tests -- 5.3 Nanoindentation and nanoscratching tests -- 5.3.1 Nanoindentation tests -- 5.3.2 Nanoscratching tests -- 5.4 Tribological behaviors -- 5.4.1 Nanofriction -- 5.4.2 Nanowear -- 5.4.3 Nanolubrication -- 5.5 Interfacial effects in nanocomposites -- 5.5.1 Polymer-based nanocomposites -- 5.5.2 Metal-based nanocomposites -- 5.6 Defect effects -- References -- 6 Application of molecular dynamics simulation in thermal problems -- 6.1 Demand for understanding the thermal properties of nanomaterials -- 6.2 Molecular dynamics simulation methods for thermal conductivity calculation -- 6.2.1 Direct method -- 6.2.2 Green-Kubo method -- 6.3 Molecular dynamics simulation of interfacial thermal transport -- 6.3.1 Interfacial thermal transport models -- 6.3.2 Interfacial thermal transport of a silicene/graphene hybrid monolayer -- 6.3.2.1 Simulation model. , 6.3.2.2 Interfacial thermal conductance -- 6.3.2.3 Temperature effect -- 6.3.2.4 Strain effect -- 6.3.2.5 Heat flux effect -- 6.3.3 Interfacial thermal transport of a silicene/graphene hybrid bilayer -- 6.3.3.1 Simulation model -- 6.3.3.2 Interface thermal conductance -- 6.3.3.3 Temperature and interface coupling strength effects -- 6.3.3.4 GE hydrogenation effect -- 6.4 Thermal rectification effects -- References -- 7 Application of molecular dynamics simulation in mass transport problems -- 7.1 Fluids in nanoconfinement -- 7.1.1 Fluid-driven methods -- 7.1.1.1 Pressure-driven method -- 7.1.1.2 Temperature-gradient driven method -- 7.1.1.3 Electric-field driven method -- 7.1.1.4 Surface-wave driven method -- 7.1.2 Water flow in carbon nanotubes -- 7.1.3 Water flow in porous monolayer graphene -- 7.1.4 Water flow in multilayer graphene and graphene oxide membranes -- 7.2 Nanofiltration with porous thin films -- 7.2.1 Reverse osmosis process -- 7.2.2 Forward osmosis process -- 7.2.3 Capacitive deionization -- 7.3 Liquid-vapor phase transition -- 7.3.1 Droplet evaporation in a gaseous environment -- 7.3.2 Liquid evaporation on a substrate -- References -- 8 Application of molecular dynamics simulation in other problems -- 8.1 Reactive molecular dynamics simulations -- 8.1.1 ReaxFF force field -- 8.1.2 Application of ReaxFF in reactive MD simulations -- 8.2 Irradiation processes -- 8.3 Material crystallization -- References -- Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...