GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C12073, doi:10.1029/2010JC006426.
    Description: We report the first 3-D numerical model study of abyssal ocean circulation and transport over the steep topography of the East Pacific Rise (EPR) and adjoining Lamont seamount chain in the eastern tropical Pacific. We begin by comparing results of hydrodynamical model calculations with observations of currents, hydrography, and SF6 tracer dispersion taken during Larval Dispersal on the Deep East Pacific Rise (LADDER) field expeditions in 2006–2007. Model results are then used to extend observations in time and space. Regional patterns are pronounced in their temporal variability at M2 tidal and subinertial periods. Mean velocities show ridge-trapped current jets flowing poleward west and equatorward east of the ridge, with time-varying magnitudes (weekly average maximum of ∼10 cm s−1) that make the jets important features with regard to ridge-originating particle/larval transport. Isotherms bow upward over the ridge and plunge downward into seamount flanks below ridge crest depth. The passage (P1) between the EPR and the first Lamont seamount to the west is a choke point for northward flux at ridge crest depths and below. Weekly averaged velocities show times of anticyclonic flow around the Lamont seamount chain as a whole and anticyclonic flow around individual seamounts. Results show that during the LADDER tracer experiment SF6 reached P1 from the south in the western flank jet. A short-lived change in regional flow direction, just at the time of SF6 arrival at P1, started the transport of SF6 to the west on a course south of the seamounts, as field observations suggest. Approximately 20 days later, a longer-lasting shift in regional flow from west to SSE returned a small fraction of the tracer to the EPR ridge crest.
    Description: The work of the lead author was funded by NOAA’s Pacific Marine Environmental Laboratory and by NOAA’s Vents Program. The work of the other authors has been supported by the Biological and Physical Oceanography Sections of the Division of Ocean Sciences of the NSF under grants OCE‐0424953 and OCE‐0425361, Larval Dispersion along the Deep East Pacific Rise (LADDER).
    Keywords: Mid-ocean ridge ; Abyssal ocean currents ; Numerical model ; SF6 tracer ; Inverse calculation ; Eastern tropical Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: image/gif
    Format: application/pdf
    Format: video/avi
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...