GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Climate of the Past, Copernicus GmbH, Vol. 12, No. 3 ( 2016-03-31), p. 787-798
    Abstract: Abstract. In the eastern Pacific, lithogenic input to the ocean responds to variations in the atmospheric and oceanic system and their teleconnections over different timescales. Atmospheric (e.g., wind fields), hydrological (e.g., fresh water plumes) and oceanic (e.g., currents) conditions determine the transport mode and the amount of lithogenic material transported from the continent to the continental shelf. Here, we present the grain size distribution of a composite record of two laminated sediment cores retrieved from the Peruvian continental shelf that record the last ∼ 1000 years at a sub-decadal to centennial time-series resolution. We propose novel grain size indicators of wind intensity and fluvial input that allow reconstructing the oceanic–atmospheric variability modulated by sub-decadal to centennial changes in climatic conditions. Four grain size modes were identified. Two are linked to aeolian inputs (M3: ∼ 54; M4: ∼ 91 µm on average), the third is interpreted as a marker of sediment discharge (M2: ∼ 10 µm on average), and the last is without an associated origin (M1: ∼ 3 µm). The coarsest components (M3 and M4) dominated during the Medieval Climate Anomaly (MCA) and the Current Warm Period (CWP) periods, suggesting that aeolian transport increased as a consequence of surface wind stress intensification. In contrast, M2 displays an opposite behavior, exhibiting an increase in fluvial terrigenous input during the Little Ice Age (LIA) in response to more humid conditions associated with El Niño-like conditions. Comparison with other South American paleoclimate records indicates that the observed changes are driven by interactions between meridional displacement of the Intertropical Convergence Zone (ITCZ), the South Pacific Subtropical High (SPSH) and Walker circulation at decadal and centennial timescales.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...