GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Materials, MDPI AG, Vol. 12, No. 13 ( 2019-06-30), p. 2111-
    Abstract: This study investigated the different thicknesses of TiO2 photoanode films and the effect of surface plasmon resonance (SPR) of Ag-TiO2 nanocomposites on the current-voltage (I–V) performance of dye-sensitized solar cells (DSSC). The TiO2 layer was deposited using the doctor blade technique and the thickness of the TiO2 films was controlled by using a different number of Scotch tape layers. The silver nanoparticles (AgNP) were synthesised using a chemical reduction method and the concentration of sodium citrate as a reducing agent was varied from 4 to 12 mM to study the effect of citrate ion on the size of the nanoparticles. Ag-TiO2 nanopowder was prepared by adding pure anatase TiO2 powder into AgNP colloidal solution. The mixture was left to dry for 24 h to obtain Ag-TiO2 powder for paste preparation. The three-layer Scotch tape, with thickness of 14.38 µm, achieved a high efficiency of 4.14%. This results showed that three layers was the optimal thickness to improve dye loading and to reduce the charge recombination rate. As for the Ag-TiO2 nanocomposites, 10 mM of AgNP, with a mean diameter of 65.23 nm and high efficiency of 6.92%, proved that SPR can enhance the absorption capability of dye and improve the photon-to-electron generation.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...