GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Atmospheric and Oceanic Technology Vol. 33, No. 7 ( 2016-07), p. 1455-1471
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 33, No. 7 ( 2016-07), p. 1455-1471
    Abstract: Latent heat fluxes (LHF) play an essential role in the global energy budget and are thus important for understanding the climate system. Satellite-based remote sensing permits a large-scale determination of LHF, which, among others, are based on near-surface specific humidity . However, the random retrieval error ( ) remains unknown. Here, a novel approach is presented to quantify the error contributions to pixel-level of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data, version 3.2 (HOAPS, version 3.2), dataset. The methodology makes use of multiple triple collocation (MTC) analysis between 1995 and 2008 over the global ice-free oceans. Apart from satellite records, these datasets include selected ship records extracted from the Seewetteramt Hamburg (SWA) archive and the International Comprehensive Ocean–Atmosphere Data Set (ICOADS), serving as the in situ ground reference. The MTC approach permits the derivation of as the sum of model uncertainty and sensor noise , while random uncertainties due to in situ measurement errors ( ) and collocation ( ) are isolated concurrently. Results show an average of 1.1 ± 0.3 g kg −1 , whereas the mean ( ) is in the order of 0.5 ± 0.1 g kg −1 (0.5 ± 0.3 g kg −1 ). Regional analyses indicate a maximum of exceeding 1.5 g kg −1 within humidity regimes of 12–17 g kg −1 , associated with the single-parameter, multilinear retrieval applied in HOAPS. Multidimensional bias analysis reveals that global maxima are located off the Arabian Peninsula.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...