GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Journal of Animal Science Vol. 100, No. Supplement_1 ( 2022-03-08), p. 22-23
    In: Journal of Animal Science, Oxford University Press (OUP), Vol. 100, No. Supplement_1 ( 2022-03-08), p. 22-23
    Abstract: Forage and supplemental feed costs remain the overriding factors driving profitability in U.S. cow/calf operations. The cow/calf sector uses 74% of the total feed energy required to produce one pound of carcass weight. Methane is the second most abundant anthropogenic greenhouse gas after carbon dioxide. The cow/calf sector of beef production accounts for 77 to 81% of enteric methane emissions per unit of carcass weight produced. Reducing feed energy required and methane emissions by the cow/calf segment of the beef production system will improve economic, environmental, and social sustainability. Most of the beef production cycle occurs on land not suitable for raising crops. Of the 2.3 billion acres available in the United States, about 655 million acres (29%) are classified as grassland pasture and rangeland, and 316 million acres (14%) are identified as parks and wildlife areas, some of which are grazed. Therefore, improving forage utilization efficiency would have a wide-reaching impact on U.S. food security and profitability of cow/calf enterprises. Beef production is a critical component in U.S. and global food security because cattle upcycle poorly digestible plant components and food waste products into high-quality human edible protein. In recent years, substantial progress has been made in understanding biological variation and genetic components of feed efficiency in growing animals consuming energy-dense mixed diets during the post-weaning phase. Much less is known about within-animal variation of forage utilization efficiency for beef cows consuming moderate to low-quality forage diets common to most cow/calf production systems. Considerable evidence indicates the existence of an environment by genetic interaction for feed efficiency. More rapid progress in forage utilization efficiency and reduction in greenhouse gas emissions could be made by studying forage utilization efficiency directly.
    Type of Medium: Online Resource
    ISSN: 0021-8812 , 1525-3163
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1490550-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...