GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2012-09-25
    Description: On the relation between Meridional Overturning Circulation and sea-level gradients in the Atlantic Earth System Dynamics, 3, 109-120, 2012 Author(s): H. Kienert and S. Rahmstorf On the basis of model simulations, we examine what information on changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC) can be extracted from associated changes in sea surface height (SSH), specifically from a broad Atlantic north–south gradient as has been suggested previously in the literature. Since a relation between AMOC and SSH changes can only be used as an AMOC diagnostic if it is valid independently of the specific forcing, we consider three different forcing types: increase of CO 2 concentration, freshwater fluxes to the northern convection sites and the modification of Southern Ocean winds. We concentrate on a timescale of 100 yr. We find approximately linear and numerically similar relations between a sea-level difference within the Atlantic and the AMOC for freshwater as well as wind forcing. However, the relation is more complex in response to atmospheric CO 2 increase, which precludes this sea-level difference as an AMOC diagnostic under climate change. Finally, we show qualitatively to what extent changes in SSH and AMOC strength, which are caused by simultaneous application of different forcings, correspond to the sum of the changes due to the individual forcings, a potential prerequisite for more complex SSH-based AMOC diagnostics.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-01-20
    Description: Vertical and horizontal processes in the global atmosphere and the maximum entropy production conjecture Earth System Dynamics, 3, 19-32, 2012 Author(s): S. Pascale, J. M. Gregory, M. H. P. Ambaum, R. Tailleux, and V. Lucarini The objective of this paper is to reconsider the Maximum Entropy Production conjecture (MEP) in the context of a very simple two-dimensional zonal-vertical climate model able to represent the total material entropy production due at the same time to both horizontal and vertical heat fluxes. MEP is applied first to a simple four-box model of climate which accounts for both horizontal and vertical material heat fluxes. It is shown that, under condition of fixed insolation, a MEP solution is found with reasonably realistic temperature and heat fluxes, thus generalising results from independent two-box horizontal or vertical models. It is also shown that the meridional and the vertical entropy production terms are independently involved in the maximisation and thus MEP can be applied to each subsystem with fixed boundary conditions. We then extend the four-box model by increasing its resolution, and compare it with GCM output. A MEP solution is found which is fairly realistic as far as the horizontal large scale organisation of the climate is concerned whereas the vertical structure looks to be unrealistic and presents seriously unstable features. This study suggest that the thermal meridional structure of the atmosphere is predicted fairly well by MEP once the insolation is given but the vertical structure of the atmosphere cannot be predicted satisfactorily by MEP unless constraints are imposed to represent the determination of longwave absorption by water vapour and clouds as a function of the state of the climate. Furthermore an order-of-magnitude estimate of contributions to the material entropy production due to horizontal and vertical processes within the climate system is provided by using two different methods. In both cases we found that approximately 40 mW m −2 K −1 of material entropy production is due to vertical heat transport and 5–7 mW m −2 K −1 to horizontal heat transport.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-28
    Description: Downscaling climate change scenarios for apple pest and disease modeling in Switzerland Earth System Dynamics, 3, 33-47, 2012 Author(s): M. Hirschi, S. Stoeckli, M. Dubrovsky, C. Spirig, P. Calanca, M. W. Rotach, A. M. Fischer, B. Duffy, and J. Samietz As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980–2009 and 2045–2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth ( Cydia pomonella ) and fire blight ( Erwinia amylovora ) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045–2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1% on average today to over 60% in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g. insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-09
    Description: Variation in emission metrics due to variation in CO 2 and temperature impulse response functions Earth System Dynamics, 4, 267-286, 2013 Author(s): D. J. L. Olivié and G. P. Peters Emission metrics are used to compare the climate effect of the emission of different species, such as carbon dioxide (CO 2 ) and methane (CH 4 ). The most common metrics use linear impulse response functions (IRFs) derived from a single more complex model. There is currently little understanding on how IRFs vary across models, and how the model variation propagates into the metric values. In this study, we first derive CO 2 and temperature IRFs for a large number of complex models participating in different intercomparison exercises, synthesizing the results in distributions representing the variety in behaviour. The derived IRF distributions differ considerably, which is partially related to differences among the underlying models, and partially to the specificity of the scenarios used (experimental setup). In a second part of the study, we investigate how differences among the IRFs impact the estimates of global warming potential (GWP), global temperature change potential (GTP) and integrated global temperature change potential (iGTP) for time horizons between 20 and 500 yr. Within each derived CO 2 IRF distribution, underlying model differences give similar spreads on the metrics in the range of −20 to +40% (5–95% spread), and these spreads are similar among the three metrics. GTP and iGTP metrics are also impacted by variation in the temperature IRF. For GTP, this impact depends strongly on the lifetime of the species and the time horizon. The GTP of black carbon shows spreads of up to −60 to +80% for time horizons to 100 yr, and even larger spreads for longer time horizons. For CH 4 the impact from variation in the temperature IRF is still large, but it becomes smaller for longer-lived species. The impact from variation in the temperature IRF on iGTP is small and falls within a range of ±10% for all species and time horizons considered here. We have used the available data to estimate the IRFs, but we suggest the use of tailored intercomparison projects specific for IRFs in emission metrics. Intercomparison projects are an effective means to derive an IRF and its model spread for use in metrics, but more detailed analysis is required to explore a wider range of uncertainties. Further work can reveal which parameters in each IRF lead to the largest uncertainties, and this information may be used to reduce the uncertainty in metric values.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-06-08
    Description: A theoretical framework for the net land-to-atmosphere CO 2 flux and its implications in the definition of "emissions from land-use change" Earth System Dynamics, 4, 171-186, 2013 Author(s): T. Gasser and P. Ciais We develop a theoretical framework and analysis of the net land-to-atmosphere CO 2 flux in order to discuss possible definitions of "emissions from land-use change". The terrestrial biosphere is affected by two perturbations: the perturbation of the global carbon-climate-nitrogen system (CCN) with elevated atmospheric CO 2 , climate change and nitrogen deposition; and the land-use change perturbation (LUC). Here, we progressively establish mathematical definitions of four generic components of the net land-to-atmosphere CO 2 flux. The two first components are the fluxes that would be observed if only one perturbation occurred. The two other components are due to the coupling of the CCN and LUC perturbations, which shows the non-linear response of the terrestrial carbon cycle. Thanks to these four components, we introduce three possible definitions of "emissions from land-use change" that are indeed used in the scientific literature, often without clear distinctions, and we draw conclusions as for their absolute and relative behaviors. Thanks to the OSCAR v2 model, we provide quantitative estimates of the differences between the three definitions, and we find that comparing results from studies that do not use the same definition can lead to a bias of up to 20% between estimates of those emissions. After discussion of the limitations of the framework, we conclude on the three major points of this study that should help the community to reconcile modeling and observation of emissions from land-use change. The appendix mainly provides more detailed mathematical expressions of the four components of the net land-to-atmosphere CO 2 flux.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-07-12
    Description: A stochastic model for the polygonal tundra based on Poisson–Voronoi diagrams Earth System Dynamics, 4, 187-198, 2013 Author(s): F. Cresto Aleina, V. Brovkin, S. Muster, J. Boike, L. Kutzbach, T. Sachs, and S. Zuyev Subgrid processes occur in various ecosystems and landscapes but, because of their small scale, they are not represented or poorly parameterized in climate models. These local heterogeneities are often important or even fundamental for energy and carbon balances. This is especially true for northern peatlands and in particular for the polygonal tundra, where methane emissions are strongly influenced by spatial soil heterogeneities. We present a stochastic model for the surface topography of polygonal tundra using Poisson–Voronoi diagrams and we compare the results with available recent field studies. We analyze seasonal dynamics of water table variations and the landscape response under different scenarios of precipitation income. We upscale methane fluxes by using a simple idealized model for methane emission. Hydraulic interconnectivities and large-scale drainage may also be investigated through percolation properties and thresholds in the Voronoi graph. The model captures the main statistical characteristics of the landscape topography, such as polygon area and surface properties as well as the water balance. This approach enables us to statistically relate large-scale properties of the system to the main small-scale processes within the single polygons.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-05-08
    Description: Climate change impact on available water resources obtained using multiple global climate and hydrology models Earth System Dynamics, 4, 129-144, 2013 Author(s): S. Hagemann, C. Chen, D. B. Clark, S. Folwell, S. N. Gosling, I. Haddeland, N. Hanasaki, J. Heinke, F. Ludwig, F. Voss, and A. J. Wiltshire Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological models (eight) were used to systematically assess the hydrological response to climate change and project the future state of global water resources. This multi-model ensemble allows us to investigate how the hydrology models contribute to the uncertainty in projected hydrological changes compared to the climate models. Due to their systematic biases, GCM outputs cannot be used directly in hydrological impact studies, so a statistical bias correction has been applied. The results show a large spread in projected changes in water resources within the climate–hydrology modelling chain for some regions. They clearly demonstrate that climate models are not the only source of uncertainty for hydrological change, and that the spread resulting from the choice of the hydrology model is larger than the spread originating from the climate models over many areas. But there are also areas showing a robust change signal, such as at high latitudes and in some midlatitude regions, where the models agree on the sign of projected hydrological changes, indicative of higher confidence in this ensemble mean signal. In many catchments an increase of available water resources is expected but there are some severe decreases in Central and Southern Europe, the Middle East, the Mississippi River basin, southern Africa, southern China and south-eastern Australia.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2013-06-07
    Description: Simple emission metrics for climate impacts Earth System Dynamics, 4, 145-170, 2013 Author(s): B. Aamaas, G. P. Peters, and J. S. Fuglestvedt In the context of climate change, emissions of different species (e.g., carbon dioxide and methane) are not directly comparable since they have different radiative efficiencies and lifetimes. Since comparisons via detailed climate models are computationally expensive and complex, emission metrics were developed to allow a simple and straightforward comparison of the estimated climate impacts of emissions of different species. Emission metrics are not unique and variety of different emission metrics has been proposed, with key choices being the climate impacts and time horizon to use for comparisons. In this paper, we present analytical expressions and describe how to calculate common emission metrics for different species. We include the climate metrics radiative forcing, integrated radiative forcing, temperature change and integrated temperature change in both absolute form and normalised to a reference gas. We consider pulse emissions, sustained emissions and emission scenarios. The species are separated into three types: CO 2 which has a complex decay over time, species with a simple exponential decay, and ozone precursors (NO x , CO, VOC) which indirectly effect climate via various chemical interactions. We also discuss deriving Impulse Response Functions, radiative efficiency, regional dependencies, consistency within and between metrics and uncertainties. We perform various applications to highlight key applications of emission metrics, which show that emissions of CO 2 are important regardless of what metric and time horizon is used, but that the importance of short lived climate forcers varies greatly depending on the metric choices made. Further, the ranking of countries by emissions changes very little with different metrics despite large differences in metric values, except for the shortest time horizons (GWP20).
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-07-31
    Description: Hydrological cycle over South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments Earth System Dynamics, 4, 199-217, 2013 Author(s): S. Hasson, V. Lucarini, and S. Pascale We investigate how the climate models contributing to the PCMDI/CMIP3 dataset describe the hydrological cycle over four major South and Southeast Asian river basins (Indus, Ganges, Brahmaputra and Mekong) for the 20th, 21st (13 models) and 22nd (10 models) centuries. For the 20th century, some models do not seem to conserve water at the river basin scale up to a good degree of approximation. The simulated precipitation minus evaporation ( P − E ), total runoff ( R ) and precipitation ( P ) quantities are neither consistent with the observations nor among the models themselves. Most of the models underestimate P − E for all four river basins, which is mainly associated with the underestimation of precipitation. This is in agreement with the recent results on the biases of the representation of monsoonal dynamics by GCMs. Overall, a modest inter-model agreement is found only for the evaporation and inter-annual variability of P − E . For the 21st and 22nd centuries, models agree on the negative (positive) changes of P − E for the Indus basin (Ganges, Brahmaputra and Mekong basins). Most of the models foresee an increase in the inter-annual variability of P − E for the Ganges and Mekong basins, thus suggesting an increase in large low-frequency dry/wet events. Instead, no considerable future change in the inter-annual variability of P − E is found for the Indus and Brahmaputra basins.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-01
    Description: A trend-preserving bias correction – the ISI-MIP approach Earth System Dynamics, 4, 219-236, 2013 Author(s): S. Hempel, K. Frieler, L. Warszawski, J. Schewe, and F. Piontek Statistical bias correction is commonly applied within climate impact modelling to correct climate model data for systematic deviations of the simulated historical data from observations. Methods are based on transfer functions generated to map the distribution of the simulated historical data to that of the observations. Those are subsequently applied to correct the future projections. Here, we present the bias correction method that was developed within ISI-MIP, the first Inter-Sectoral Impact Model Intercomparison Project. ISI-MIP is designed to synthesise impact projections in the agriculture, water, biome, health, and infrastructure sectors at different levels of global warming. Bias-corrected climate data that are used as input for the impact simulations could be only provided over land areas. To ensure consistency with the global (land + ocean) temperature information the bias correction method has to preserve the warming signal. Here we present the applied method that preserves the absolute changes in monthly temperature, and relative changes in monthly values of precipitation and the other variables needed for ISI-MIP. The proposed methodology represents a modification of the transfer function approach applied in the Water Model Intercomparison Project (Water-MIP). Correction of the monthly mean is followed by correction of the daily variability about the monthly mean. Besides the general idea and technical details of the ISI-MIP method, we show and discuss the potential and limitations of the applied bias correction. In particular, while the trend and the long-term mean are well represented, limitations with regards to the adjustment of the variability persist which may affect, e.g. small scale features or extremes.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...